Decompose the forces acting on the block into components that are parallel and perpendicular to the ramp. (See attached free body diagram. Forces are not drawn to scale)
• The net force in the parallel direction is
∑ <em>F</em> (para) = -<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
• The net force in the perpendicular direction is
∑ <em>F</em> (perp) = <em>n</em> - <em>mg</em> cos(21°) = 0
Solving the second equation for <em>n</em> gives
<em>n</em> = <em>mg</em> cos(21°)
<em>n</em> = (0.200 kg) (9.80 m/s²) cos(21°)
<em>n</em> ≈ 1.83 N
Then the magnitude of friction is
<em>f</em> = <em>µn</em>
<em>f</em> = 0.25 (1.83 N)
<em>f</em> ≈ 0.457 N
Solve for the acceleration <em>a</em> :
-<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
<em>a</em> = (-0.457N - (0.200 kg) (9.80 m/s²) sin(21°))/(0.200 kg)
<em>a</em> ≈ -5.80 m/s²
so the block is decelerating with magnitude
<em>a</em> = 5.80 m/s²
down the ramp.
Answer:
yes, kinda like when babies are made, there is friction
Explanation:
Answer:
Input force = 100N
Explanation:
Formula
Mechanical Advantage = output force / input force.
Givens
MA = 6
Output Force = 600 N
Input Force = ??
Solution
6 = 600 / x
Multiply both sides by x
6x = (600/x)*x
6x = 600
The xs cancel. Now Divide by 6
6x/6 = 600/6
x = 100 N
Answer:
The arrow will bury itself farther by 3S₁
Explanation:
<u />
lets assume; the Arrow shot by me has a speed twice the speed of the arrow fired by the younger shooter
Given that ; acceleration is constant , Frictional force is constant
A₂ = A₁
Vf²₂ - Vi²₂ / 2s₂ = Vf₁² - Vi₁² / 2s₁ ---- ( 1 )
final velocities = 0
Initial velocities : Vi₂ = 2(Vi₁ )
Back to equation 1
0 - (2Vi₁ )² / 2s₂ = 0 - Vi₁² / 2s₁
hence :
s₂ = 4s₁
hence the Arrow shot by me will burry itself farther by :
s₂ - s₁ = 3s₁
<em>Note : S1 = distance travelled by the arrow shot by the younger shooter</em>