1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sauron [17]
3 years ago
10

A student looks at ocean waves coming into the beach. An ocean wave with more energy will A) have a greater height. B) have a gr

eater period. C) travel toward the beach faster. D) strike the beach with greater frequency.
Physics
2 answers:
attashe74 [19]3 years ago
3 0

It would be A: Have a greater height.


The higher the wave the higher the energy!

Nitella [24]3 years ago
3 0

Answer:

An ocean wave with more energy will have a greater height

Explanation:

A student looks at ocean waves coming into the beach. The energy of wave depends on the amplitude of wave. Amplitude of a wave is the distance from equilibrium position to the crest or trough of the wave.

So, an ocean wave with more energy will have a greater height. The height of wave is equal to twice the amplitude of wave. Hence, the correct option is (A).

You might be interested in
When you ride a bike and make a turn, you can feel your body trying to move in the same direction the bike was going. Which of N
Alisiya [41]

Answer:

C

Explanation:

Newtons second law explains this the most because for every action their is an equal and opposite reaction. The reaction of you turning, causes the reaction of your whole body to turn with the bike.

3 0
3 years ago
25 POINTS FOR CORRECT ANSWER
castortr0y [4]
No.  I do not agree with Stefan.  Quite the contrary.  I disagree
with his description of "<span>angle of incidence" as the angle between
the surface of the mirror and the incoming ray. 

The correct description of "angle of incidence" is </span><span>the angle between
the NORMAL TO the surface of the mirror and the incoming ray. 

Thus, the true angle of incidence is the complement of the angle that
Stefan calculates or measures.</span>
5 0
3 years ago
Read 2 more answers
An electron and a proton are held on an x axis, with the electron at x = + 1.000 m
mixas84 [53]

Answer:

  r2 = 1 m

therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m

Explanation:

For this exercise we must use conservation of energy

the electric potential energy is

          U = k \frac{q_1q_2}{r_{12}}

for the proton at x = -1 m

          U₁ =- k \frac{e^2 }{r+1}

for the electron at x = 1 m

          U₂ = k \frac{e^2 }{r-1}

starting point.

        Em₀ = K + U₁ + U₂

        Em₀ = \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1}

final point

         Em_f = k e^2 ( -\frac{1}{r_2 +1} + \frac{1}{r_2 -1})

   

energy is conserved

        Em₀ = Em_f

        \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})              

       

        \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(  \frac{2}{(r_2+1)(r_2-1)} )

we substitute the values

½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [ - \frac{1}{20+1} + \frac{1}{20-1} ) = 9 109 (1.6 10-19) ²( \frac{2}{r_2^2 -1} )

          2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ ( \frac{1}{r_2^2 -1} )

          2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷     \frac{1}{r_2^2 -1}

          \frac{2.0475 \ 10^{-28} }{1.1549 \ 10^{-37} } = \frac{1}{r_2^2 -1}

          r₂² -1 = (4.443 10⁸)⁻¹

           

          r2 = \sqrt{1 + 2.25 10^{-9}}

          r2 = 1 m

therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m

4 0
3 years ago
The rms (root-mean-square) speed of a diatomic hydrogen molecule at 50∘C is 2000 m/s. Note that 1.0 mol of diatomic hydrogen at
denis-greek [22]

Answer:

A) d. (1/4)(2000m/s) = 500 m/s

B) c. 4000 J

C) f. None of the above (2149.24 m/s)

Explanation:

A)

The translational kinetic energy of a gas molecule is given as:

K.E = (3/2)KT

where,

K = Boltzman's Constant = 1.38 x 1^-23 J/K

T = Absolute Temperature

but,

K.E = (1/2) mv²

where,

v = root mean square velocity

m = mass of one mole of a gas

Comparing both equations:

(3/2)KT = (1/2) mv²

v = √(3KT)/m  _____ eqn (1)

<u>FOR HYDROGEN:</u>

v = √(3KT)/m = 2000 m/s  _____ eqn (2)

<u>FOR OXYGEN:</u>

velocity of oxygen = √(3KT)/(mass of oxygen)  

Here,

mass of 1 mole of oxygen = 16 m

velocity of oxygen = √(3KT)/(16 m)

velocity of oxygen = (1/4) √(3KT)/m

using eqn (2)

<u>velocity of oxygen = (1/4)(2000 m/s) = 500 m/s</u>

B)

K.E = (3/2)KT

Since, the temperature is constant for both gases and K is also a constant. Therefore, the K.E of both the gases will remain same.

K.E of Oxygen = K.E of Hydrogen

<u>K.E of Oxygen = 4000 J</u>

C)

using eqn (2)

At, T = 50°C = 323 k

v = √(3KT)/m = 2000 m/s

m = 3(1.38^-23 J/k)(323 k)/(2000 m/s)²

m = 3.343 x 10^-27 kg

So, now for this value of m and T = 100°C = 373 k

v = √(3)(1.38^-23 J/k)(373 k)/(3.343 x 10^-27 kg)

<u>v = 2149.24 m/s</u>

<u></u>

8 0
3 years ago
How does the theory of plate tectonics explain these similarities of location?
Nookie1986 [14]
<span>he theory states that Earth's outermost layer, the lithosphere, is broken into 7 large, rigid pieces called plates: the African, North American, South American, Eurasian, Australian, Antarctic, and Pacific plates. Several minor plates also exist, including the Arabian, Nazca, and Philippines plates. The plates are all moving in different directions and at different speeds</span>
7 0
3 years ago
Other questions:
  • You will begin with a relatively standard calculation.Consider a concave spherical mirror with a radius of curvature equal to 60
    11·1 answer
  • Which of the following waves are mechanical waves?
    11·2 answers
  • A decrease in the magnitude of velocity is called
    11·1 answer
  • How can the time period of a pendulum be decreased or increased
    13·1 answer
  • A particle initially located at the origin has an acceleration of a 2.00j m/s2 and an initial velocity of v-6.00i m/s. (a) Find
    5·1 answer
  • Organized elements into four groups based on properties
    13·1 answer
  • An electron experiences a force of magnitude F when it is 5 cm from a very long, charged wire with linear charge density, lambda
    14·1 answer
  • Which two minerals are commercial sources of iron. explain why the answer is a?
    11·1 answer
  • Help me plzzzz
    13·2 answers
  • 3. A penguin waddles 8 m uphill before sliding back down to its friends in 2 seconds. If the penguin ends where it started, what
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!