Answer:
The correct option is (b).
Explanation:
Given that,
At the top of the hill, the kinetic energy is E and the gravitational potential energy is 3E.
We need to find the kinetic energy of the car on the ground.
We know that,
Mechanical energy = kinetic energy + potential energy
According to the law of conservation of energy, the total mechanical energy is conserved.
It means, when it coasts down to ground level, the kinetic energy is same as that on the top of the hill. Hence, the required kinetic energy on the ground is equal to 3E.
Answer:
Isothermal : P2 = ( P1V1 / V2 ) , work-done 
Adiabatic : : P2 =
, work-done =
W = 
Explanation:
initial temperature : T
Pressure : P
initial volume : V1
Final volume : V2
A) If expansion was isothermal calculate final pressure and work-done
we use the gas laws
= PIVI = P2V2
Hence : P2 = ( P1V1 / V2 )
work-done :

B) If the expansion was Adiabatic show the Final pressure and work-done
final pressure

where y = 5/3
hence : P2 = 
Work-done
W = 
Where 
Answer:
10^-7 C
Explanation:
m = 1 g = 10^-3 kg, E = 200,000 N/C, a = 20 m/s^2, u = 0
Let q be the charge on bead
Force = m a = q E
a = q E / m
q = m a / E = (10^-3 x 20) / 200000 = 10^-7 C
Answer:
Kr
Explanation:
the element that is in group 18 is noble gasses. the elements are helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn), and oganesson (Og).