Answer:
<h2>3.31 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 23.2 g
volume = final volume of water - initial volume of water
volume = 62 - 55 = 7 mL
We have

We have the final answer as
<h3>3.31 g/mL</h3>
Hope this helps you
Answer: The Moseley chart was based on using the atomic mnumber of the element, not the chemical properties. Because of the similarities between elements of the same period, this often created problems in establishing an order; Moseley's work enabled the change of the atomic number from an arbitrary selection to a definable property, measurable through experimentation.
Explanation:
Molecules huddle close together.
cannot form to any shape.
Answer:

Explanation:
Hello,
In this case, the dissociation reaction is:

For which the equilibrium expression is:
![Ksp=[Pb^{2+}][I^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BPb%5E%7B2%2B%7D%5D%5BI%5E-%5D%5E2)
Thus, since the saturated solution is 0.064g/100 mL at 20 °C we need to compute the molar solubility by using its molar mass (461.2 g/mol)

In such a way, since the mole ratio between lead (II) iodide to lead (II) and iodide ions is 1:1 and 1:2 respectively, the concentration of each ion turns out:
![[Pb^{2+}]=1.39x10^{-3}M](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%3D1.39x10%5E%7B-3%7DM)
![[I^-]=1.39x10^{-3}M*2=2.78x10^{-3}M](https://tex.z-dn.net/?f=%5BI%5E-%5D%3D1.39x10%5E%7B-3%7DM%2A2%3D2.78x10%5E%7B-3%7DM)
Thereby, the solubility product results:

Regards.