Answer:
e is the correct one , hope I helped u
The correct option is (b)
NaNH2 is an effective base. It can be a good nucleophile in the few situations where its strong basicity does not have negative side effects. It is employed in elimination reactions as well as the deprotonation of weak acids.Alkynes, alcohols, and a variety of other functional groups with acidic protons, such as esters and ketones, will all be deprotonated by NaNH2, a powerful base.Alkynes are deprotonated with NaNH2 to produce what are known as "acetylide" ions. These ions are powerful nucleophiles that can react with alkyl halides to create carbon-carbon bonds and add to carbonyls in an addition reaction.Acid/base and nucleophilic substitution are the two types of reactions.Using the right base, terminal alkynes can be deprotonated to produce a carbanion.A good C is the acetylide carbanion.The acetylide carbanion can undergo nucleophilic substitution reactions because it is a potent C nucleophile. (often SN2) with 1 or 2 alkyl halides with electrophilic C to create an internal alkyne (Cl, Br, or I).Elimination is more likely to occur with 3-alkyl halides.It is possible to swap either one or both of the terminal H atoms in ethylene (acetylene) to create monosubstituted (R-C-C-H) and symmetrical (R = R') or unsymmetrical (R not equal to R') disubstituted alkynes (R-C-C-R').
Learn more about NANH2 here :-
brainly.com/question/12601787
#SPJ4
Answer is A bc you can get electrocuted
Answer:
Every oxidation must be accompanied by a reduction.
Explanation:
Oxidation and reduction are complementary processes. There can be no oxidation without reduction and vice versa. It is actually a given an take affair. A specie looses electrons which must be gained by another specie to complete the process. This explains why the selected option is the correct one.
Answer is: volume will be 6,7 L.
Boyle's Law: the pressure volume law - <span> volume of a given amount of gas held varies inversely with the applied pressure when the temperature and mass are constant.
p</span>₁V₁ = p₂V₂.
90 kPa · 5 L = 67 kPa · V₂.
V₂ = 90 kPa · 5 L / 67 kPa.
V₂ = 6,7 L, but same amount of oxygen.