If a logarithm has a coefficient, then the coefficient can also be written as the exponent of the input of the logarithm. In other words, if you have the logarithm alog(x), that is equal to log(x^a). So the expression can be rewritten:
log(x^2)+log(y^3)
If tow logarithms of the same bases are added together that is equal to the logarithm of the product of the inputs of the two original logarithms. In other words, given log(x)+log(y), it can also be written as log(xy). So the expression can be combined into one logarithm:
log(x^2 * y^3)
Isometric graph paper is a triangular graph paper which uses a series of three guidelines forming a 60° grid of small triangles. The triangles are arranged in groups of six to make hexagons.
3/5 would be the answer because every 3 banana nut here is 5 corn
Look at the graph below carefully
Observe the results of shifting ={2}^{x}f(x)=2x
vertically:
The domain, (−∞,∞) remains unchanged.
When the function is shifted up 3 units to ={2}^{x}+3g(x)=2x +3:
The y-intercept shifts up 3 units to (0,4).
The asymptote shifts up 3 units to y=3y=3.
The range becomes (3,∞).
When the function is shifted down 3 units to ={2}^{x}-3h(x)=2 x −3:
The y-intercept shifts down 3 units to (0,−2).
The asymptote also shifts down 3 units to y=-3y=−3.
The range becomes (−3,∞).