I don't know what the "six-step method" is supposed to be, so I'll just demonstrate the typical method for this problem.
Let <em>x</em> be the amount (in gal) of the 50% antifreeze solution that is required. The new solution will then have a total volume of (<em>x</em> + 60) gal.
Each gal of the 50% solution used contributes 0.5 gal of antifreeze. Similarly, each gal of the 30% solution contributes 0.3 gal of antifreeze. So the new solution will contain (0.5 <em>x</em> + 0.3 * 60) gal = (0.5 <em>x</em> + 18) gal of antifreeze.
We want the concentration of antifreeze to be 40% in the new solution, so we need to have
(0.5 <em>x</em> + 18) / (<em>x</em> + 60) = 0.4
Solve for <em>x</em> :
0.5 <em>x</em> + 18 = 0.4 (<em>x</em> + 60)
0.5 <em>x</em> + 18 = 0.4 <em>x</em> + 24
0.5 <em>x</em> - 0.4 <em>x</em> = 24 - 18
0.1 <em>x</em> = 6
<em>x</em> = 6/0.1 = 60 gal
What types of problems can be solved using the greatest common factor? What types of problems can be solved using the least common multiple? Complete the explanation.
<span>*** Use the words 'same' and 'different' to complete the following sentences.*** </span>
<span>Problems in which two different amounts must be split into (the same) number of groups can be solved using the GCF. Problems with events that occur on (different) schedules can be solved using the LCM.</span>
Answer:
m = 0
Step-by-step explanation:

Answer: The Last option is the only option equivalent to that equation.