Answer:
The career planning process is ongoing and sequential. Since it is fluid rather than chronological, you move to the next step only when you are ready to do so, and you may move back and forth between steps at any given time. The career planning process is also cyclic. When career change is desired anytime during your work life, you may repeat the process once again. Data from the U.S. Bureau of Labor Statistics indicates that the majority of members of the labor force will make three to four major changes in their career during their 35 to 45 years of working. Because human beings are complex, each of us has unique aspirations, goals, potential for development, and limitations. Although we can follow the same process, career planning outcomes must be individualized.
Step-by-step explanation:
Answer:
-7
Step-by-step explanation:
f(3) = 2(3)+3 = 9
g(4) = 2^4 = 16
9 - 16 = -7
1.25*(t)+7=43.25
To solve the 2nd one, you must do 43.25 - 7 = 26.25
36.25 divided by 1.25 = 29
Answer:
(a) 315°
(b) 3°
(c) 238°
Step-by-step explanation:
Bearings are measured clockwise from north. The triangle described is illustrated in the attachment.
<h3>(a)</h3>
The bearing of P from R is 180° different from the bearing of R from P it will be ...
135° +180° = 315° . . . . bearing of P from R
__
<h3>(b)</h3>
The bearing of Q from R is 48° more than the bearing of P from R, so is ...
315° +48° = 363°, or 3° . . . . bearing of Q from R
__
<h3>(c)</h3>
The angle QPR has a value that makes the sum of angles in the triangle equal to 180°. It is ...
180° -48° -55° = 77°
The bearing of Q from P is 77° less than the bearing of R from P, so is ...
135° -77° = 58°
As above, the reverse bearing from Q to P is ...
58° +180° = 238° . . . . bearing of P from Q
Answer:
It would be A
Step-by-step explanation: