True, for example, sound waves are known for vibrating and they move up and down in a particular pattern depending on the pitch and volume. :) Hope this helps x
Answer:
L= 1 m, ΔL = 0.0074 m
Explanation:
A clock is a simple pendulum with angular velocity
w = √ g / L
Angular velocity is related to frequency and period.
w = 2π f = 2π / T
We replace
2π / T = √ g / L
T = 2π √L / g
We will use the value of g = 9.8 m / s², the initial length of the pendulum, in general it is 1 m (L = 1m)
With this length the average time period is
T = 2π √1 / 9.8
T = 2.0 s
They indicate that the error accumulated in a day is 15 s, let's use a rule of proportions to find the error is a swing
t = 1 day (24h / 1day) (3600s / 1h) = 86400 s
e= Δt = 15 (2/86400) = 3.5 104 s
The time the clock measures is
T ’= To - e
T’= 2.0 -0.00035
T’= 1.99965 s
Let's look for the length of the pendulum to challenge time (t ’)
L’= T’² g / 4π²
L’= 1.99965 2 9.8 / 4π²
L ’= 0.9926 m
Therefore the amount that should adjust the length is
ΔL = L - L’
ΔL = 1.00 - 0.9926
ΔL = 0.0074 m
Answer:
A) vectors: veloicty, force
scalar: speed, work
B) t = 1.75 s, C) v = - 17 2 m / s
Explanation:
We answer each part separately
A) A vector magnitude has magnitude and direction instead a scalar magnitude has only magnitude
vector quantities: the speed of a car number is the magnitude and direction is where it goes
Force, the number is the magnitude and above that applies gives direction
Scalar magnitude: how quickly the number of the speedometer of the car
Temperature, work
B) I = 15 m height to the soil and get to calculate time = 0
y = y₀ + v₀ t - ½ g t²
as the ball is loose its initial velocity is zero
0 = 0 +0 - ½ g t²
t =
t = 
t = 1.75 s
C) the velocity to the reach the floor
v = vo - g t
v = 0 - g t
v = - 9.8 1.74
v = - 17 2 m / s
The negative signt iindicates that the speed goes down
Im not sure what are you asking about. But in physic/ mechanic usually when the object against gravity, its deceleration but when the object follow the gravity its acceleration
Also usually when the object move to the left side the speed will be negative (-) this is probably because of deceleration? since deceleration = -acceleration.
Answer:
A) A negative charge of value Q is induced on sphere B
B) there is an attraction between sphere
C) The charge of sphere A is distributed between the two spheres,
Explanation:
This is an electrostatic problem, in general charges of the same sign attract and repel each other.
with this principle let's analyze the different situations
A) The sphere A that is insulating has a charge on its surface and zero charge is its interior
The conducting sphere B has zero charge, but the sphere A creates an attraction in the electrons, therefore a negative charge of the same value as the charge of the sphere A is induced in the part closest and in the part farther away than one that a positive charge.
A negative charge of value Q is induced on sphere B
B) In this case there is an attraction between sphere A with positive charge and sphere B with negative induced charge
C) When the two spheres come into contact, the charge of sphere A is distributed between the two spheres, therefore each one has a positive charge of value half of the initial charge, as now we have net positive charges in the two spheres charges of the same sign repel each other so the spheres separate