Answer:
(a) Microfilaments
(b) Microtubules
(c) Microtubules
(d) Microfilaments
(e) Intermediate filaments
(f) Microfilaments, intermediate filaments, microtubules
(g) Microfilaments, microtubules
(h) Microfilaments, intermediate filaments, microtubules
(i) Microtubules, microfilaments
(j) Microtubules
Explanation:
Microtubules (MTs) are dimers of the protein tubulin (alpha- and beta-tubulin subunits) and they are major components of the cytoskeleton. MTs play diverse cellular roles including, mechanical support (cytoskeleton), transport, motility, chromosome segregation, etc. Microfilaments (MFs) are protein filaments that also form part of the cytoskeleton in eukaryotic cells. MFs consist of G-actin monomers assembled in linear actin polymers, and their functions include mechanical support, cytokinesis, changes in cell shape, amoeboid movement, endocytosis and exocytosis, etc. MFs associate with the protein myosin to generate muscle contractions. Actin filaments/MTs assembly from monomeric actin/tubulin is caused due to energy expenditure, where ATP/GTP bound to actin/tubulin is hydrolyzed during polymerization. Finally, intermediate filaments (IFs) are a type of cytoskeletal element composed of a heterogeneous group of structural elements, and they are not found in all eukaryotes. The primary function of the IFs is to contribute to the mechanical support for the plasma membrane where these filaments come into contact with other cells and/or with the extracellular matrix. The IFs are not directly involved in cell movement. All 3 types of cytoskeletal elements (microfilaments, intermediate filaments, microtubules) can be visualized by fluorescence microscopy when cells express chimeric MT/IF/MF.–GFP fusion proteins.
Answer:
Gene knockout is a technique used to determine the function of a gene that has already been sequenced, which is achieved by analyzing the phenotype of the individual carrying the knockout mutation(s). Moreover, gene sequencing is a technique used to determine the sequence of a given gene, which allows to determine how gene variants (polymorphisms) may be associated with the phenotypes of the target trait.
Explanation:
In genetics, gene knockout is a technique used to trigger mutations in a (already) sequenced gene in order to inactive its function and observe the resulting phenotype for a particular trait. This approach that starts with the inactivation of a given gene and ends with the phenotype is known as reverse-genetics. On the other hand, gene sequencing can be defined as the methodologies/techniques/tools used to determine the nucleotide base pair sequence of a particular gene. The gene knockout technique involves knowing a priori the gene sequence in order to obtain a gene knockout (gene KO). The combination of the information obtained from these techniques can be used to determine how variation (genetic variation) affects the expression of a phenotypic trait.
I would say a beacause tundra is very cold desert snd only certain amount of vegetation can happen
Answer:
Enzymes unwind the DNA molecule into two strands.
Explanation:
I just took the quiz and it was correct
Answer:
For this receptor, the stimulus begins with an explosion of action potentials.
that would be the correct option.
Explanation:
A tonic receptor is one that is activated when the action potentials were maintained over time and during the signaling of the receptor.
Tone receptors require continuous stimulation over a period of time to trigger a response and deliver it to the central nervous system.
It keeps the nervous system constantly active in the environment that surrounds it.
They are slowly adaptable, an example of these receptors are the merkel and ruffini receptors.