<h2>Answer-Average rate of change(A(x)) of f(x) over a interval [a,b] is given by:</h2><h2 /><h2>A(x) = \frac{f(b)-f(a)}{b-a}A(x)= </h2><h2>b−a</h2><h2>f(b)−f(a)</h2><h2> </h2><h2> </h2><h2 /><h2>Given the function:</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^xf(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>x</h2><h2> </h2><h2 /><h2>We have to find the average rate of change from x = 1 to x= 2</h2><h2 /><h2>At x = 1</h2><h2 /><h2>then;</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^1 = 5f(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>1</h2><h2> =5</h2><h2 /><h2>At x = 2</h2><h2 /><h2>then;</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^2=20 \cdot \frac{1}{16} = 1.25f(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>2</h2><h2> =20⋅ </h2><h2>16</h2><h2>1</h2><h2> </h2><h2> =1.25</h2><h2 /><h2>Substitute these in above formula we have;</h2><h2 /><h2>A(x) = \frac{f(2)-f(1)}{2-1}A(x)= </h2><h2>2−1</h2><h2>f(2)−f(1)</h2><h2> </h2><h2> </h2><h2 /><h2>⇒A(x) = \frac{1.25-5}{1}=-3.75A(x)= </h2><h2>1</h2><h2>1.25−5</h2><h2> </h2><h2> =−3.75</h2><h2 /><h2>therefore, average rate of change of the function f(x) from x = 1 to x = 2 is, -3.75</h2>
<h2>Please Mark me as brainlist. </h2>
Answer:
what graph show me the graph
Step-by-step explanation:
Answer:
The Answer is: y - 3 = 3/2(x - 1)
Step-by-step explanation:
Given Points: (1, 3) and (-3, -3)
Find the slope m:
m = y - y1 / (x - x1)
m = 3 - (-3) / (1 - (-3))
m = 3 + 3 / 1 + 3
m = 6 / 4 = 3/2
Use the point slope form and point (1, 3):
y - y1 = m(x - x1)
y - 3 = 3/2(x - 1)
Hope this helps! Have an Awesome day!! :-)
Answer:
8 pencils
Step-by-step explanation:
We can reverse everything that is happening in the problem like this!...
Jeremiah has 20 - 4 pencils = 16 than 2 reverse operation of multiplication which will be division then 16 ÷ 2 = 8
Check work? 8 more than 2 times equals 16 + 4 more that Jeremiah has equals 20 pencils
Olivia needs 15 yards of ribbon.
2.5x18=45 feet
divide 45ft by 3 to see how many yards that would be.
45/3=15
Hope that I helped