1) The outcomes for rolling two dice, the sample space, is as follows:
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)
There are 36 outcomes in the sample space.
2) The ways to roll an odd sum when rolling two dice are:
(1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (3, 6), (4, 1), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6, 1), (6, 3), (6, 5). There are 18 outcomes in this event.
3) The probability of rolling an odd sum is 18/36 = 1/2 = 0.5
= ( x + 2 )°
= (7y)°
<h2>#
<em><u>c</u></em><em><u>a</u></em><em><u>r</u></em><em><u>r</u></em><em><u>y</u></em><em><u> </u></em><em><u>on</u></em><em><u> </u></em><em><u>learning</u></em></h2>
<em><u>#</u></em><em><u>g</u></em><em><u>a</u></em><em><u>l</u></em><em><u>a</u></em><em><u>d</u></em><em><u>o</u></em><em><u>h</u></em><em><u>a</u></em><em><u>n</u></em><em><u>n</u></em><em><u>a</u></em><em><u>d</u></em><em><u>i</u></em><em><u>v</u></em><em><u>i</u></em><em><u>n</u></em><em><u>e</u></em><em><u>2</u></em><em><u>9</u></em>