Answer:
Z= V/QT
Step-by-step explanation:
Answer:
The 95% confidence interval for the true mean cholesterol content, μ, of all such eggs is between 226.01 and 233.99 milligrams.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 230 - 3.99 = 226.01
The upper end of the interval is the sample mean added to M. So it is 230 + 3.99 = 233.99.
The 95% confidence interval for the true mean cholesterol content, μ, of all such eggs is between 226.01 and 233.99 milligrams.
2x - 3 < 11 or 8x -10 < 82: <span>X < 23/2
<span>
Part 1</span>
</span>2x-3<11
Add 3 both sides
2x-3+3<11+3
Refine
2x<14
Divide by 2 on both sides
2x / 2 / 14 / 2
Refine
x < 7
<span>
Part 2</span>
8x-10<82
Add 10 to both sides
8x-10+10<82+10
Refine
8x<92
Divide by 8
8x / 8 / 92 / 8
Refine
x < 23 / 2
Answer: = ( 63.9, 66.7)
Therefore at 90% confidence interval (a,b)= ( 63.9, 66.7)
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 65.3
Standard deviation r = 5.2
Number of samples n = 36
Confidence interval = 90%
z(at 90% confidence) = 1.645
Substituting the values we have;
65.3 +/-1.645(5.2/√36)
65.3 +/-1.645(0.86667)
65.3+/- 1.4257
65.3+/- 1.4
= ( 63.9, 66.7)
Therefore at 90% confidence interval (a,b)= ( 63.9, 66.7)