Answer:
The product of glycolysis is two molecules of pyruvate. It is a three-carbon compound. This pyruvate again undergoes oxidation in the cytoplasm. This process is called pyruvate oxidation which produces Acetyl CoA. The Acetyl CoA is a two-carbon molecule.
Acetyl CoA again used for the citric acid cycle. This is also called as Kreb's cycle / TCA cycle. Because citric acid has 3 carboxylic groups. The acetyl coenzyme produces NADH, FADH2, ATP. The citric acid cycle occurs in the mitochondrial membrane. This is an 8 step process. The first product is citric acid. The other products of each step are isocitrate, alpha-ketoglutarate, succinyl CoA, succinate, Fumarate, L - malate, and Oxaloacetate (OAA).
Another process of aerobic respiration is the electron transport chain ( ETS). Here the energy stored in NADH, FADH2 in the citric acid cycle are utilized. It is a chain of electron carriers. ETS occurs in the inner membrane of mitochondria.
In short, the glucose splits by glycolysis and produces ATP, NADPH, and final product pyruvate. The pyruvate is oxidized and forms acetyle coenzyme. This is used in the TCA / citric acid cycle. In this process also NADH, FADH2 which forms electrons are produced. Theses electrons are carried by different electron carriers and accepted by oxygen.
In the process of pyruvate oxidation 6 ATP, and in Kreb's cycle 18 ATPs, in ETS, 4 ATPs are produced. In addition to this in glycolysis produces 4 ATPs. The total number of ATP in aerobic respiration is 32 ATP.
The answer is To this question is D
you would have to make a chart for 7. but it eight, the pointy beak would end up making it easier the get food. the long wings would make for better flight. and strong muscles could make it so that there is not a much lactic acid building up in your muscles as easily
I think the correct answer from the choices listed above would be the second option. In multicell organisms, cells that work together to perform a certain function form <span>Organs. Hope this answers the question. Have a nice day. Feel free to ask more questions.</span>
Answer:haemoglobin
Explanation:
Inside the air sacs, oxygen moves across paper-thin walls to tiny blood vessels called capillaries and into your blood. A protein called haemoglobin in the red blood cells then carries the oxygen around your body.