1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
motikmotik
3 years ago
14

A linear function has a slope of -7/9 and a y-intercept of 3. How does this function compare to the linear function that is repr

esented by the equation y+11=-7/9(x-18)
Mathematics
2 answers:
sergij07 [2.7K]3 years ago
8 0

Answer:

A

Step-by-step explanation:

it has the same slope and the same y-intercept

Dmitriy789 [7]3 years ago
4 0
The answer is that they're equal, one is just in point-slope form and the other is in slope-intercept form
You might be interested in
A circle has a circumference of 28π centimeters. In terms of π, what is the area of the circle to the nearest square centimeter?
Vadim26 [7]

Hi there!

The formula to find the are of a circle is :

a = \pir²

The formula to find the circumference of a circle is :

c = 2\pir


In order to use the area formula, you need to figure out what the radius (r) is.

If we solve for "r" in the circumference equation, we have :

r = c ÷ (2\pi)


Now we use this to replace "r" in the area formula :

a = \pi ( c ÷ (2\pi))²


When we simplify this we get :

a = c² ÷ 4\pi


Now you can put your value of "c" into this equation and find "a".

*Remember, \pi is about 3.1416.


Solving for "a" :

a = c² ÷ 4\pi

a = 28² ÷ 4\pi


28² = 28 × 28 = 784


a = 784 ÷ 4\pi


4\pi = 4 × \pi = 12.56637061435917


a = 784 ÷ 12.56637061435917

a = 62.38873769202297cm²


You need to round to the nearest square centimeter, which means that you need to round to the nearest whole number :

a = 62cm²


There you go! I really hope this helped, if there's anything just let me know! :)

8 0
3 years ago
PLS HELP WITH THIS FOR BRAINLIEST!!!!!!!
Yuliya22 [10]

Answer:

30,063 Brainest pls I really need it

6 0
2 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
What is the slope of y=-x perpendicular to the equation
tensa zangetsu [6.8K]

\frac{1}{2} x

7 0
3 years ago
. Two volunteer groups plant trees. Group A
Irina18 [472]
30
It’s a word problem for LCM
3 x 10 which will give you the lowest common multiple (LCM) also giving you the lowest number of clusters
3 0
3 years ago
Other questions:
  • Alicia is making a triangular sign for the school play. The area of the sign is 558 in. The base of the triangle is 36in. What i
    6·2 answers
  • What is the slope of y=3x-10
    13·2 answers
  • The total charge that has entered a circuit element is q(t) = 6 (1 - e-7t) when t ≥ 0 and q(t) = 0 when t &lt; 0. The current in
    14·1 answer
  • Someone help please!!!
    8·1 answer
  • What are the solutions to the quadratic equation 4x2=64?
    5·2 answers
  • What is the simplified form of (4x2y3)3?
    11·1 answer
  • Which of these sets of angle measures could be the three angles in a triangle? A)50, 60, 70
    12·1 answer
  • Which division problems below have the same quotient as –27 ÷ 9? Check all that apply.
    14·2 answers
  • If the probability of a newborn kitten being female is 0.5, find the probability that in 100 births, 55 or more will be female.
    7·1 answer
  • PLEASE HELP ASAP!! CORRECT ANSWERS ONLY PLEASE!!!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!