Lets solve the question,
Given dimensions are:
Length = 26 feet
Width = 14 feet
concrete walkway with width = c
After installing the concrete walkway dimensions of the walkway will be,
Length = 26 + 2c
Width = 14 + 2c
She wants to build a wooden deck around the pool with a concrete walkway of width = w
Thus the dimensions of the wooden deck around the pool will be,
Length = 
Width = 
Now the perimeter of the wooden deck will be,
Perimeter = 2(length + width)
![= 2[(26 +2c + 2w) + 2(14 + 2c + 2w)] = 2(40 + 4c + 4w) = (80 + 8c + 8w)](https://tex.z-dn.net/?f=%3D%202%5B%2826%20%2B2c%20%2B%202w%29%20%2B%202%2814%20%2B%202c%20%2B%202w%29%5D%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%202%2840%20%2B%204c%20%2B%204w%29%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%20%2880%20%2B%208c%20%2B%208w%29)
Therefore, perimeter of the wooden deck would be: 80 + 8c + 8w
Perimeter = (80 + 8c + 8w)
Learn more about Perimeter on:
brainly.com/question/397857
#SPJ10
Answer:
x >8
Step-by-step explanation:
You solve by 140-68 which equals 72
So x=72 degrees
Option D:
The approximate area of the figure is 109.6 square feet.
Solution:
The figure is splitted into three shapes.
One is rectangle and the other two is semi-circles.
Diameter of the semi-circle = 5 feet
Radius of the semi-circle = 5 ÷ 2 = 2.5 feet
Area of the semi-circle = 

Area of the semi-circle = 9.8 square feet
Area of 2 semi-circles = 2 × 9.8
Area of 2 semi-circles = 19.6 square feet
Length of the rectangle = 18 feet
Width of the rectangle = 5 feet
Area of the rectangle = length × width
= 18 × 5
Area of the rectangle = 90 square feet
Area of the figure = Area of 2 semi-circles + Area of the rectangle
= 19.6 square feet + 90 square feet
= 109.6 square feet
The approximate area of the figure is 109.6 square feet.
Hence Option D is the correct answer.