Hello!
To find the equation of a line parallel to y = 3x - 3 and passing through the point (4, 15), we need to know that if two lines are parallel, then their slopes are equivalent.
This means that we create a new equation in slope-intercept form, which includes the original slope, which is equal to 3.
In slope-intercept form, we need a y-intercept. So, we would substitute the given ordered pair into the new equation with the same slope and solve.
Remember that slope-intercept form is: y = mx + b, where m is the slope and b is the y-intercept.
y = 3x + b (substitute the ordered pair (4, 15))
15 = 3(4) + b (simplify)
15 = 12 + b (subtract 12 from both sides)
3 = b
Therefore, the equation for the line parallel to the line y = 3x - 3, and passing through the point (4, 15) is y = 3x + 3.
If you were to find the constant rate, you would have to take 4.5 and divide it into 234 to get the answer
You would get 52 as the constant speed
Answer:
G. 105.
Step-by-step explanation:
Percentage of cars with 3 or more people
= 15 + 7 + 3
= 25%,
25% of 420
= 0.25 * 420
= 105.
Answer:
65%,0.7,2/3,5/8
Step-by-step explanation:
Answer:
£1443.89
Step-by-step explanation:
To start you take the £1700 and multiply it by 4% (or .04) to find how much it depreciates for the first year. For the first year the depreciation £68 so the next year it will be worth £1632 ( £1700 - 68). You do the same thing for the second year but you start with the amount its worth now (£1632) and multiply again by the 4%. The depreciation for the second year is 65.28. Now you take what it was worth at the start of the year (£1632) and subtract the depreciation for the second year (65.28) to get £1566.72. You do the same process again for the third year to end up with a value of £1504.05. Now for the 4th year you will take the value of £1504.05 and again multiply by the depreciation rate of 4% to find the last amount of depreciation which is £60.16. Take your starting value for year 4 (£1504.05) and subtract the amount of depreciation (£60.16) to get your answer of £1443.89.