6.2 would be the length of each of the 7 pieces of string <span />
2b 2a
----------------- + -----------------
(b+a)^2 (b^2 - a^2)
2b 2a
= ----------------- + -------------------
(b+a)(b+a) (b+a)(b-a)
2b(b - a) + 2a(b + a)
= ------------------------------------
(b+a)(b+a)(b-a)
2b^2 - 2ab + 2ab + 2a^2
= ---------------------------------------
(b+a)(b+a)(b-a)
2b^2 + 2a^2
= ------------------------
(b+a)(b+a)(b-a)
2(b^2 + a^2)
= ------------------------
(b+a)^2 (b-a)
Answer:
Numerator: 2(b^2 + a^2)
Denominator: (b+a)^2 (b-a)
Sin 2x - sin x=0
Using the trigonometric identity: sin 2x=2 sinx cosx
2 sinx cosx - sinx =0
Common factor sinx
sinx ( 2 cosx -1)=0
Two options:
1) sinx=0
on the interval [0,2π), the sinx=0 for x=0 and x=<span>π=3.1416→x=3.14
2) 2 cosx - 1=0
Solving for cosx
2 cosx-1+1=0+1
2 cosx = 1
Dividing by 2 both sides of the equation:
(2 cosx)/2=1/2
cosx=1/2
cosx is positive in first and fourth quadrant:
First quadrant cosx=1/2→x=cos^(-1) (1/2)→x=</span><span>π/3=3.1416/3→x=1.05
Fourth quadrant: x=</span>2π-π/3=(6π-π)/3→x=5<span>π/3=5(3.1416)/3→x=5.24
Answer: Solutions: x=0, 1.05, 3.14, and 5.24</span>
The simplified form of this expression is <u>28 + 10i </u>
<h3>This question is an expression of imaginary numbers</h3>
Imaginary numbers are numbers that are composed of a real number and an imaginary part.
< To resolve this issue, let's remove the first parenthesis:
(3i + 4) - i + 4(6 + 2i)
3i + 4 - i + 4(6 + 2i)
< In the second parentheses, let's apply the distributive property:
3i + 4 - i + 4(6 + 2i)
3i + 4 - i + 4 . 6 + 4 . 2i
3i + 4 - i + 24 + 8i
< Finally, let's just sum the like terms, along with the real terms:
3i + 4 - i + 24 + 8i
10i + 4 + 24
10i + 28
<u>28 + 10i</u>
Therefore, the correct value will be <u>28 + 10i</u>