![\bf \cfrac{(a-3)\left( \frac{a}{3}+1 \right)}{\frac{1}{3}}\implies 3\left[ (a-3)\left( \frac{a}{3}+1 \right) \right] \\\\\\ 3\left[\frac{a^2}{3}+a-a-3 \right]\implies 3\left[\frac{a^2}{3}-3 \right]\implies a^2-9](https://tex.z-dn.net/?f=%20%5Cbf%20%5Ccfrac%7B%28a-3%29%5Cleft%28%20%5Cfrac%7Ba%7D%7B3%7D%2B1%20%5Cright%29%7D%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Cimplies%203%5Cleft%5B%20%28a-3%29%5Cleft%28%20%5Cfrac%7Ba%7D%7B3%7D%2B1%20%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%203%5Cleft%5B%5Cfrac%7Ba%5E2%7D%7B3%7D%2Ba-a-3%20%20%5Cright%5D%5Cimplies%203%5Cleft%5B%5Cfrac%7Ba%5E2%7D%7B3%7D-3%20%20%5Cright%5D%5Cimplies%20a%5E2-9%20)
when you have polynomials multiplication, say (x+y) (a+b+c), you can always just multiply x(a+b+c) + y(a+b+c), namely each term by all others and sum them up, like above.
No, because if you do -17/-40 you would get a positive answer of 0.425 and it would not equal -0.425.
Answer:
g(3) = 13
Step-by-step explanation:
The function g(3) means you replace every x value in the g(x) equation with 3:

Hope this helps!