Yea so whats the question or is that just a fact<span />
Answer:
-7/4
Step-by-step explanation:
You are looking for the composite g(f(2)). The simplest way to solve this is to evaluate f(2) and enter the solution in to your g function.
g(f(2))=g(-(2)^2-2(2)+4)=g(-4-4+4)=g(-4)
g(-4)=4/(-4(-4)-2)=4/(16-2)=4/14=2/7
Therfor, g(f(2))=2/7 **I'm assuming the -4x-2 is all in the denominator of the g(x) function. If -2 is not in the denominator you would have
g(f(2))=4/(-4(-4)) -2=4/16 -2=1/4 -2=1/4-8/4= -7/4
Answer:
X >>>>> Y
–1 >>>> 16
0 >>>>> 8
1 >>>>> 4
2 >>>>> 2
3 >>>>> 1
Step-by-step explanation:
From the question given above,
y = 8 × (½)ˣ
When x = –1, y =?
y = 8 × (½)ˣ
y = 8 × (½)¯¹
y = 8 × 2
y = 16
When x = 1, y =?
y = 8 × (½)ˣ
y = 8 × (½)¹
y = 8 × ½
y = 4
When x = 2, y =?
y = 8 × (½)ˣ
y = 8 × (½)²
y = 8 × ¼
y = 2
When x = 3, y =?
y = 8 × (½)ˣ
y = 8 × (½)³
y = 8 × ⅛
y = 1
SUMMARY:
X >>>>> Y
–1 >>>> 16
0 >>>>> 8
1 >>>>> 4
2 >>>>> 2
3 >>>>> 1
Answer:
x²/2166784 +y²/2159989 = 1
Step-by-step explanation:
The relationship between the semi-axes and the eccentricity of an ellipse is ...
e = √(1 -b²/a²)
In order to write the desired equation we need to find 'b' from 'e' and 'a'.
__
<h3>semi-minor axis</h3>
Squaring the equation for eccentricity gives ...
e² = 1 -b²/a²
Solving for b², we have ...
b²/a² = 1 -e²
b² = a²(1 -e²)
<h3>ellipse equation</h3>
Using the given values, we find ...
b² = 1472²(1 -0.056²) = 2166784(0.996864) ≈ 2159989
The desired equation is ...
x²/2166784 +y²/2159989 = 1
It goes like this 1/2, 1/4, 1/8. But if your asking about what fraction didn’t get affected than that just zero because the original peace was cut in half.
If that’s not what you mean can you please elaborate to me!