Answer:
The volume of a given gas sample is directly proportional to its absolute temperature at constant pressure (Charles's law). The volume of a given amount of gas is inversely proportional to its pressure when temperature is held constant (Boyle's law).
Answer:
The answer to your question is given after the questions so I just explain how to get it.
Explanation:
a)
Get the molecular weight of Phosphoric acid
H₃PO₄ = (3 x 1) + (31 x 1) + (16 x 4)
= 3 + 31 + 64
= 98 g
98 g ----------------- 1 mol
0.045 g --------------- x
x = (0.045 x 1) / 98
x = 0.045 / 98
x = 0.00046 moles or 4.6 x 10 ⁻⁴
b)
Molarity = 
Molarity = 
Molarity = 0.0013 or 1.31 x 10⁻³
c)
Formula C₁V₁ = C₂V₂
V₁ = C₂V₂ / C₁
Substitution
V₁ = (0.0013)(1) / 0.01
Simplification and result
V₁ = 0.0013 / 0.1
V₁ = 0.13 l = 130 ml
Answer: The author used the word "conversely" because the first statement he made is in CONTRAST to the second statement he made.
Explanation:
Matter is made up of atoms or molecules that are in constant motion. The motion of these tiny particles ( molecules) gives the object energy. The movement of these molecules depends on the state of matter which includes
--> GASEOUS STATE: Here, the particles are completely free to move and are always in motion.
--> LIQUID STATE: particles in this state slide by one another and are always in motion.
--> SOLID STATE: particles in this state are held tightly together but are always in motion.
Also, the molecules in motion are greatly affected by temperature changes. Increase in temperature will cause the particles in the liquid to move faster. Such is seen when soup is heated, the molecules travel faster than before. But the OPPOSITE is seen in an ice cube. This is because the ice cube is in solid state and of a lower temperature.