I choose the option A.
The electron absorbs energy from specific wavelength then moving from a lower energy orbital to a higher energy orbital.
Answer:
All objects resist changes to their states of motion.
Explanation:
Sir Issac Newton was an English physicist, mathematician, astronomer and a well known author. Besides, he was a great scientist. Newton discovered many scientific phenomenon and scientific theories in nature.
The most important and famous discoveries of Newton is the Newton's laws of motion. Newtons stated three laws of motion, namely, Newtons 1st law of motion, Newton's 2nd laws of motion and Newton's 3rd law of motion.
According to Newtons's 1st law of motion : A body continues to be in the state of motion or in the state of rest until and unless an external force is applied to it. In other words, all bodies resists changes to the states of their motion or rest.
I believe an atom. may be wrong, science is not my strong suit
Answer:
D. Ni²⁺
Explanation:
We know at once that the answer cannot be A or C, because Ni and Cu are already in their lowest oxidation states.
The correct answer must be either B or D.
An electrolytic cell is the opposite of a galvanic cell. In the former, the reaction proceeds spontaneously. In the latter, you must force the reaction to occur.
One strategy to solve this problem is:
- Look up the standard reduction potentials for the half reaction·
- Figure out the spontaneous direction.
- Write the equation in the reverse direction.
1. Standard reduction potentials
E°/V
Cu²⁺ + 2e⁻ ⟶ Cu; 0.3419
Ni²⁺ + 2e⁻ ⟶ Ni; -0.257
2. Galvanic Cell
We reverse the direction of the more negative half cell and add.
<u>E°/V
</u>
Ni ⟶ Ni²⁺ + 2e⁻; 0.257
<u>Cu²⁺ + 2e⁻ ⟶ Cu; </u> 0.3419
Ni + Cu²⁺ ⟶ Cu + Ni²⁺; 0.599
This is the spontaneous direction.
Cu²⁺ is reduced to Cu.
3. Electrochemical cell
<u>E°/V</u>
Ni²⁺ + 2e⁻ ⟶ Ni; -0.257
<u>Cu ⟶ Cu²⁺ + 2e⁻; </u> <u>-0.3419</u>
Cu + Ni²⁺ ⟶ Ni + Cu²⁺; -0.599
This is the non-spontaneous direction.
Ni²⁺ is reduced to Ni in the electrolytic cell.
Molarity is defined as the number of moles of solute in 1 L of solution
mass fo KCl in the solution is - 5.0 g
number of moles of KCl - 5.0 g/ 74.5 g/mol = 0.067 mol
number of moles of KCl in 100 mL - 0.067 mol
therefore number of KCl moles in 1 L - 0.067 / 100 mL x 1000 mL = 0.67 M
molarity of KCl is 0.67 M