Answer:
cos 4u = co^s2 2u - sin^2 2u
Step-by-step explanation:
cos 4u = co^s2 2u - sin^2 2u
Let 4u = 2x
cos 2x = cos^2 x - sin^ 2 x
cos (x+x) = cos^2 x - sin^ 2 x
Using cos(x+y) = cos(x)cos(y) -sin(x)sin(y)
cos(x) cos(x)- sin(x) sin (x)= cos^2 x - sin^ 2 x
cos^2 (x) -sin^2 (x) =cos^2 x - sin^ 2 x
Since this is true
cos 2x = cos^2 x - sin^ 2 x
This is true
Substituting 4u back for 2x
cos 4u = co^s2 2u - sin^2 2u
This is true
The statement above is true. Polar equations indeed can describe graphs as functions, even if when the equations in the rectangular coordinate system are not one of the functions. Polar equations can be graphed accurately using hands by using the Polar Coordinate System.
Given:
The function is:

To find:
The inverse of the given function, then draw the graphs of function and its inverse.
Solution:
We have,

Step 1: Substitute
.

Step 2: Interchange x and y.

Step 3: Isolate variable y.


Step 4: Substitute
.

Hence, the inverse of the given function is
and the graphs of these functions are shown below.