Using the z-distribution, as we are working with a proportion, it is found that the 99% confidence interval for the proportion of all U. S. Adults who would include the 9/11 attacks on their list of 10 historic events is (0.7458, 0.7942). It means that we are 99% sure that the true proportion for all U.S. adults is between these two bounds.
<h3>What is a confidence interval of proportions?</h3>
A confidence interval of proportions is given by:

In which:
is the sample proportion.
In this problem, the parameters are:

The lower limit of this interval is:

The upper limit of this interval is:

The 99% confidence interval for the proportion of all U. S. Adults who would include the 9/11 attacks on their list of 10 historic events is (0.7458, 0.7942). It means that we are 99% sure that the true proportion for all U.S. adults is between these two bounds.
More can be learned about the z-distribution at brainly.com/question/25890103
Answer:
c(x)=(x+3)^2+5
Step-by-step explanation:
To complete the square, the same value needs to be added to both sides.
So, to complete the square x^2+6x+9=(x+3)^2 add 9 to the expression
C(x) =x^2 +6x + 9 + 14
Since 9 was added to the right-hand side also add 9 to the left-hand side
C(x) +9= x^2 +6x + 9 + 14
Using a^2 + 2ab + b^2=(a+b)^2, factor the expression
C(x)+9= (x+3)^2 +14
Move constant to the right-hand side and change its sign
C(x)=(x+3)^2 +14 - 9
Subtract the numbers
C(x)= (x+3)^2 +5