We have
.
First let us factor the 2 to obtain,

We can now see clearly that the expression inside the parentheses is a difference of two squares.
We now write the 4 as 2². So that we obtain the expression,

Recall that

Hence our expression becomes,

Therefore, when factored completely,

Answer:
s = 70
Step-by-step explanation:



<h2>Insta: 25k_kem</h2>
Answer:
The volume of the cylinder = π r² h
where r is the radius of the cylinder and h is the height of the cylinder.
This is formula is applied for the right cylinder as figure 1 and oblique cylinder as figure2.
<u>The volume of the cylinder of figure 1:</u>
r = 6 and h = 7
volume = π r² h = π * 6² * 7 = 252π units³
<u>The volume of the cylinder of figure 2:</u>
r = 11 and h = 15
volume = π r² h = π * 11² * 15 = 1,815π units³
Resposta:
Primer rectangle:
Amplada = 11
Longitud = 14
Segon rectangle:
Amplada = 12
Longitud = 15
Tercer rectangle:
Amplada = 13
Longitud = 16
Explicació pas a pas:
Donat que:
Primer rectangle:
Amplada = x
Longitud = x + 3
2n rectangle:
Augment de la dimensió d'1 cm respecte al primer rectangle;
Amplada = x + 1
Longitud = x + 4
3r rectangle:
Augment de la dimensió de 2 cm respecte al primer rectangle;
Amplada = x + 2
Longitud = x + 5
Suma dels tres perímetres del rectangle:
Perímetre d'un rectangle: 2 (l + O)
Primer rectangle:
2 (x + x + 3) = 2 (2x + 3) = 4x + 6
2n:
2 (x + 1 + x + 4) = 2 (2x + 5) = 4x + 10
3r:
2 (x + 2 + x + 5) = 2 (2x + 7) = 4x + 14
Suma de perímetres = 162
(4x + 6 + 4x + 10 + 4x + 14) = 162
12x + 30 = 162
12x = 162 - 30
12x = 130
x = 11
Per tant,
Primer rectangle:
Amplada = 11
Longitud = 11 + 3 = 14
2n rectangle:
Amplada = 11 + 1 = 12
Longitud = 11 + 4 = 15
3r rectangle:
Amplada = 11 + 2 = 13
Longitud = 11 + 5 = 16