640 x 0.30= 192
640-192= 448
448 is the answer
Answer:
The area of the parallelogram is:_______________________________________________________
in² = 1174 ⅛ in² = 1174.125 in² .
_______________________________________________________Explanation:_______________________________________________________Area of a parallelogram:
_______________________________________________________ A = base * height = b * h ;
From the figure (from the actual "question"):
_______________________________________ b = 50.5 in.
h = 23.25 in.
____________________________________________________________Method 1) A = b * h =
= (50.5 in) * (23.25 in) = 1174.125 in² ; or, write as: 1174 <span>⅛ .
</span>
____________________________________________________________Method 2) A = b * h =
= (50 ½ in) * (23 <span>¼ in) =
= (</span>

in) * (

<span> in) ;
</span>
___________________________________________________________Note: "50 ½ " = [(50*2) + 1 ] / 2 =

;
Note: "23 ¼ " = [(23*4) + 1 ] / 4 =

;
____________________________________________________________
→ A = (

in) * (

in) ;
→ A =

in² =

in² ;
→ A = (9393/8) in² =
→
A =
in² = 1174 ⅛ in² = 1174.125 in² .
________________________________________________________
Answer:
$35,000
Step-by-step explanation:
if $50,000 is to install an area of 1,000 square feet swimming pool and $35,000 can be used to install an 800 square foot swimming pool I think the best graph model is 800 square feet for $35,000 for a cost cut of $15,000 is a good bargain
Answer:
The answer is below
Step-by-step explanation:
The linear model represents the height, f(x), of a water balloon thrown off the roof of a building over time, x, measured in seconds: A linear model with ordered pairs at 0, 60 and 2, 75 and 4, 75 and 6, 40 and 8, 20 and 10, 0 and 12, 0 and 14, 0. The x axis is labeled Time in seconds, and the y axis is labeled Height in feet. Part A: During what interval(s) of the domain is the water balloon's height increasing? (2 points) Part B: During what interval(s) of the domain is the water balloon's height staying the same? (2 points) Part C: During what interval(s) of the domain is the water balloon's height decreasing the fastest? Use complete sentences to support your answer. (3 points) Part D: Use the constraints of the real-world situation to predict the height of the water balloon at 16 seconds.
Answer:
Part A:
Between 0 and 2 seconds, the height of the balloon increases from 60 feet to 75 feet at a rate of 7.5 ft/s
Part B:
Between 2 and 4 seconds, the height stays constant at 75 feet.
Part C:
Between 4 and 6 seconds, the height of the balloon decreases from 75 feet to 40 feet at a rate of -17.5 ft/s
Between 6 and 8 seconds, the height of the balloon decreases from 40 feet to 20 feet at a rate of -10 ft/s
Between 8 and 10 seconds, the height of the balloon decreases from 20 feet to 0 feet at a rate of -10 ft/s
Hence it fastest decreasing rate is -17.5 ft/s which is between 4 to 6 seconds.
Part D:
From 10 seconds, the balloon is at the ground (0 feet), it continues to remain at 0 feet even at 16 seconds.