<u>Answer:</u> The pressure that must be applied to the apparatus is 0.239 atm
<u>Explanation:</u>
To calculate the osmotic pressure, we use the equation for osmotic pressure, which is:

or,

where,
= osmotic pressure of the solution
i = Van't hoff factor = 1 (for non-electrolytes)
= mass of sucrose = 3.40 g
= molar mass of sucrose = 342.3 g/mol
= Volume of solution = 1 L
R = Gas constant = 
T = temperature of the solution = ![20^oC=[20+273]K=293K](https://tex.z-dn.net/?f=20%5EoC%3D%5B20%2B273%5DK%3D293K)
Putting values in above equation, we get:

Hence, the pressure that must be applied to the apparatus is 0.239 atm
Maybe
A. 400 ml of 5.0% glucose solution
[H3O+] is just the same with [H+]. There are quite a few relationships between [H+] and [OH−] ions. And because there is a large range of number between 10 to 10-15 M, the pH is used. pH = -log[H+] and pOH = -log[OH−]. In aqueous solutions, [H+ ][OH- ] = 10-14
Read more on Brainly.com -
brainly.com/question/1365379#readmore
Triangle ADC is also a right triangle, with D the right angle, and AC the hypotenuse.
The triangles are similar (right triangles which share an angle (A), so...
AD/AC = AC/AB 5/6 = 6/AB AB = 6*6/5 = 36/5 = 7.2
Answer:
A
Explanation:
Ball bounces because of the difference in the air pressure on the outside of the ball, and opposite the point of impact, and the pressure inside of the ball. This means that the inside of the ball now has less space to contain the air molecules contained inside the ball, increasing the pressure inside the ball.