Litmus solution is generally a purple dye. The solution of Litmus is extracted from lichens. The Litmus solution is used as an indicator to determine the acidic and basic nature of a solution.Lichens plants belonging to the class of Thallophyta. The litmus solution method involves the grinding and crushing of lichens. In order to get the desired litmus solution, such dyes are then introduced to neutral water.
Answer:- Actual molarity of the original sulfuric acid solution is 17.0M.
Solution:- Barium chloride reacts with sulfuric acid to make a precipitate of barium sulfate. The balanced equation is written as:

From this equation there is 1:1 mol ratio between barium sulfate and sulfuric acid. So, if excess of barium chloride is added to sulfuric acid then the moles of sulfuric acid would be equivalent to the moles of barium sulfate. Moles of barium sulfate could be calculated from the mass of it's dry precipitate.
Molar mass of barium sulfate is 233.4 grams per mol. The calculations for the moles of sulfuric acid are given below:

= 
From given information, 10.00 mL of final acid solution were taken to react with excess of barium chloride. It means 0.00170 moles of sulfuric acid are present in 10.0 mL of final acid solution. We could calculate the actual molarity of the final solution from here as:
10.0 mL = 0.0100 L

= 0.170M
Now we would use the dilution equation to calculate the actual molarity of the original sulfuric acid solution. The molarity equation is:

From given information, 10.0 mL of original acid solution were taken in a 100 mL flask and water was added up to the mark. It means the 10 fold dilution is done. 10 fold dilution means the molarity becomes one tenth of it's original value. Let's do the calculations in reverse way as we have calculated the molarity of the final solution.
let's say the molarity after first dilution is Y. the volume is taken as 10.0 mL. Final volume is 100 mL and the molarity is 0.170M. Let's plug in the values in the equation:
Y(10.0mL) = 0.170M(100mL)
![Y=\frac{0.170M*100mL}{10.0mL}Y = 1.70MLet's do the similar calculations to find out the actual molarity of the original acid solution. Let's say the molarity of the original acid solution is X. 10.0 mL of it were taken and diluted to 100 mL on adding water. The molarity is 1.70M as is calculated in the above step. Let's plug in the values in the molarity equation again to solve it for X as:X(10.0mL) = 1.70M(100mL)[tex]X=\frac{1.70M*100mL}{10.0mL}](https://tex.z-dn.net/?f=Y%3D%5Cfrac%7B0.170M%2A100mL%7D%7B10.0mL%7D%3C%2Fp%3E%3Cp%3EY%20%3D%201.70M%3C%2Fp%3E%3Cp%3ELet%27s%20do%20the%20similar%20calculations%20to%20find%20out%20the%20actual%20molarity%20of%20the%20original%20acid%20solution.%20Let%27s%20say%20the%20molarity%20of%20the%20original%20acid%20solution%20is%20X.%2010.0%20mL%20of%20it%20were%20taken%20and%20diluted%20to%20100%20mL%20on%20adding%20water.%20The%20molarity%20is%201.70M%20as%20is%20calculated%20in%20the%20above%20step.%20Let%27s%20plug%20in%20the%20values%20in%20the%20molarity%20equation%20again%20to%20solve%20it%20for%20X%20as%3A%3C%2Fp%3E%3Cp%3EX%2810.0mL%29%20%3D%201.70M%28100mL%29%3C%2Fp%3E%3Cp%3E%5Btex%5DX%3D%5Cfrac%7B1.70M%2A100mL%7D%7B10.0mL%7D)
X = 17.0M
Hence, the actual molarity of sulfuric acid solution is 17.0M.
Answer:
a beryllium ion because the new atom has 4 protons and 4 neutrons since be has a mass number of 9 then it has to form an ion
The equilibrium constant for the reaction is 0.00662
Explanation:
The balanced chemical equation is :
2NO2(g)⇌2NO(g)+O2(g
At t=t 1-2x ⇔ 2x + x moles
The ideal gas law equation will be used here
PV=nRT
here n=
=
= density
P =
density is 0.525g/L, temperature= 608.15 K, P = 0.750 atm
putting the values in reaction
0.75 = 
M = 34.61
to calculate the Kc
Kc=![\frac{ [NO] [O2]}{NO2}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5BNO%5D%20%5BO2%5D%7D%7BNO2%7D)
x M NO2 +
M NO+
M O2
Putting the values as molecular weight of NO2, NO,O2

34.61= 
x= 0.33
Kc= 
putting the values in the above equation
Kc = 0.00662
Essential for survival growth and reproduction