Answer:b=2.5555555555...
Step-by-step explanation:9b= -23, 9b/9=b, -23/9=2.55555..., b=2.55555...
Answer:
36.65 ft (2 dp)
Step-by-step explanation:
- Angles around a point sum to 360°
- 1 hour = 60 minutes
Therefore, the minute hand of a clock travels 360° in 60 minutes
Number of degrees the minute hand will travel in 25 minutes:
![\sf =\dfrac{360}{60} \times 25=150^{\circ}](https://tex.z-dn.net/?f=%5Csf%20%3D%5Cdfrac%7B360%7D%7B60%7D%20%5Ctimes%2025%3D150%5E%7B%5Ccirc%7D)
To find how far the tip of the minute hand travels in 25 minutes, use the Arc Length formula:
![\textsf{Arc length}=2 \pi r\left(\dfrac{\theta}{360^{\circ}}\right)](https://tex.z-dn.net/?f=%5Ctextsf%7BArc%20length%7D%3D2%20%5Cpi%20r%5Cleft%28%5Cdfrac%7B%5Ctheta%7D%7B360%5E%7B%5Ccirc%7D%7D%5Cright%29)
![\textsf{(where r is the radius and}\:\theta\:{\textsf{is the angle in degrees)}](https://tex.z-dn.net/?f=%5Ctextsf%7B%28where%20r%20is%20the%20radius%20and%7D%5C%3A%5Ctheta%5C%3A%7B%5Ctextsf%7Bis%20the%20angle%20in%20degrees%29%7D)
Given:
- r = length of minute hand = 14 ft
= 150°
![\begin{aligned}\implies \textsf{Arc length} &=2 \pi (14)\left(\dfrac{150^{\circ}}{360^{\circ}}\right)\\ & = 28\pi \left(\dfrac{5}{12}\right)\\ & = \dfrac{35}{3} \pi \\ & = 36.65\: \sf ft\:(2\:dp)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cimplies%20%5Ctextsf%7BArc%20length%7D%20%26%3D2%20%5Cpi%20%2814%29%5Cleft%28%5Cdfrac%7B150%5E%7B%5Ccirc%7D%7D%7B360%5E%7B%5Ccirc%7D%7D%5Cright%29%5C%5C%20%26%20%3D%2028%5Cpi%20%5Cleft%28%5Cdfrac%7B5%7D%7B12%7D%5Cright%29%5C%5C%20%26%20%3D%20%5Cdfrac%7B35%7D%7B3%7D%20%5Cpi%20%5C%5C%20%26%20%3D%2036.65%5C%3A%20%5Csf%20ft%5C%3A%282%5C%3Adp%29%5Cend%7Baligned%7D)
<em><u>The inequality can be used to find the interval of time taken by the object to reach the height greater than 300 feet above the ground is:</u></em>
![d = -16t^2 + 1000](https://tex.z-dn.net/?f=d%20%3D%20-16t%5E2%20%2B%201000)
<em><u>Solution:</u></em>
<em><u>The object falls, its distance, d, above the ground after t seconds, is given by the formula:</u></em>
![d = -16t^2 + 1000](https://tex.z-dn.net/?f=d%20%3D%20-16t%5E2%20%2B%201000)
To find the time interval in which the object is at a height greater than 300 ft
Frame a inequality,
![-16t^2 + 1000 > 300](https://tex.z-dn.net/?f=-16t%5E2%20%2B%201000%20%3E%20300)
Solve the inequality
Subtract 1000 from both sides
![-16t^2 + 1000 - 1000 > 300 - 1000\\\\-16t^2 > -700](https://tex.z-dn.net/?f=-16t%5E2%20%2B%201000%20-%201000%20%3E%20300%20-%201000%5C%5C%5C%5C-16t%5E2%20%3E%20-700)
![16t^2 < 700\\\\Divide\ both\ sides\ by\ 16\\\\t^2 < \frac{700}{16}\\\\Take\ square\ root\ on\ both\ sides\\\\t < \sqrt{\frac{700}{16}}\\\\t < \pm 6.61](https://tex.z-dn.net/?f=16t%5E2%20%3C%20700%5C%5C%5C%5CDivide%5C%20both%5C%20sides%5C%20by%5C%2016%5C%5C%5C%5Ct%5E2%20%3C%20%5Cfrac%7B700%7D%7B16%7D%5C%5C%5C%5CTake%5C%20square%5C%20root%5C%20on%5C%20both%5C%20sides%5C%5C%5C%5Ct%20%3C%20%5Csqrt%7B%5Cfrac%7B700%7D%7B16%7D%7D%5C%5C%5C%5Ct%20%3C%20%5Cpm%206.61)
Time cannot be negative
Therefore,
t < 6.61
And the inequality used is: ![-16t^2 + 1000>300](https://tex.z-dn.net/?f=-16t%5E2%20%2B%201000%3E300)
In dividing two equation with variables and exponent, First you must align or rearrange the equation and group them base on their variables but don't forget the sign of each variables. Second, proceed in dividing its quantity and then subtract its exponent to the other variables having the same. So by calculating it, the answer would be X or X^1
Given:
The table of values is
x y
-4 2
-3 5
-2 8
-1 11
To find:
The slope of the line that contains these points.
Solution:
From the given table consider any two point.
Let the line passes through the points (-4,2) and (-3,5). So, the equation of the line is
![y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)](https://tex.z-dn.net/?f=y-y_1%3D%5Cdfrac%7By_2-y_1%7D%7Bx_2-x_1%7D%28x-x_1%29)
![y-2=\dfrac{5-2}{-3-(-4)}(x-(-4))](https://tex.z-dn.net/?f=y-2%3D%5Cdfrac%7B5-2%7D%7B-3-%28-4%29%7D%28x-%28-4%29%29)
![y-2=\dfrac{3}{-3+4}(x+4)](https://tex.z-dn.net/?f=y-2%3D%5Cdfrac%7B3%7D%7B-3%2B4%7D%28x%2B4%29)
![y-2=\dfrac{3}{1}(x+4)](https://tex.z-dn.net/?f=y-2%3D%5Cdfrac%7B3%7D%7B1%7D%28x%2B4%29)
Using distributive property, we get
![y-2=3x+12](https://tex.z-dn.net/?f=y-2%3D3x%2B12)
![y=3x+12+2](https://tex.z-dn.net/?f=y%3D3x%2B12%2B2)
![y=3x+14](https://tex.z-dn.net/?f=y%3D3x%2B14)
Therefore, the required equation of line is
.