Answer:
Explanation:
From the information given:
The cell potential on mars E = + 100 mV
By using Goldman's equation:
![E_m = \dfrac{RT}{zF}In \Big (\dfrac{P_K[K^+]_{out}+P_{Na}[Na^+]_{out}+P_{Cl}[Cl^-]_{out} }{P_K[K^+]_{in}+P_{Na}[Na^+]_{in}+ P_{Cl}[Cl^-]_{in}} \Big )](https://tex.z-dn.net/?f=E_m%20%3D%20%5Cdfrac%7BRT%7D%7BzF%7DIn%20%5CBig%20%28%5Cdfrac%7BP_K%5BK%5E%2B%5D_%7Bout%7D%2BP_%7BNa%7D%5BNa%5E%2B%5D_%7Bout%7D%2BP_%7BCl%7D%5BCl%5E-%5D_%7Bout%7D%20%7D%7BP_K%5BK%5E%2B%5D_%7Bin%7D%2BP_%7BNa%7D%5BNa%5E%2B%5D_%7Bin%7D%2B%20P_%7BCl%7D%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%20%20%20%5CBig%20%29)
Let's take a look at the impermeable cell with respect to two species;
and the two species be Na⁺ and Cl⁻
![E_m = \dfrac{RT}{zF} In \dfrac{[K^+]_{out}}{[K^+]_{in}}](https://tex.z-dn.net/?f=E_m%20%3D%20%5Cdfrac%7BRT%7D%7BzF%7D%20In%20%5Cdfrac%7B%5BK%5E%2B%5D_%7Bout%7D%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D)
where;
z = ionic charge on the species = + 1
F = faraday constant
∴
![100 \times 10^{-3} = \Big (\dfrac{8.314 \times 298}{1\times 96485} \Big) \mathtt{In} \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%20%5CBig%20%28%5Cdfrac%7B8.314%20%5Ctimes%20298%7D%7B1%5Ctimes%2096485%7D%20%5CBig%29%20%5Cmathtt%7BIn%7D%20%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![100 \times 10^{-3} = 0.0257 \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%200.0257%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![3.981= \mathtt{In} \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=3.981%3D%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![exp ( 3.981) = \dfrac{4}{[K^+]_{in}} \\ \\ 53.57 = \dfrac{4}{[K^+]_{in}}](https://tex.z-dn.net/?f=exp%20%28%203.981%29%20%3D%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%5C%5C%20%5C%5C%20%2053.57%20%3D%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D)
![[K^+]_{in} = \dfrac{4}{53.57}](https://tex.z-dn.net/?f=%5BK%5E%2B%5D_%7Bin%7D%20%3D%20%5Cdfrac%7B4%7D%7B53.57%7D)
![[K^+]_{in} = 0.0476](https://tex.z-dn.net/?f=%5BK%5E%2B%5D_%7Bin%7D%20%20%3D%200.0476)
For [Cl⁻]:
![100 \times 10^{-3} = -0.0257 \ \mathtt{In} \Big ( \dfrac{120}{[Cl^-]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%20-0.0257%20%5C%20%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![-3.981 = \ \mathtt{In} \Big ( \dfrac{120}{[Cl^-]_{in}} \Big)](https://tex.z-dn.net/?f=-3.981%20%3D%20%20%5C%20%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![0.01867 = \dfrac{120}{[Cl^-]_{in}}](https://tex.z-dn.net/?f=0.01867%20%3D%20%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D)
![[Cl^-]_{in} = \dfrac{120}{0.01867}](https://tex.z-dn.net/?f=%5BCl%5E-%5D_%7Bin%7D%20%3D%20%5Cdfrac%7B120%7D%7B0.01867%7D)
![[Cl^-]_{in} =6427.4](https://tex.z-dn.net/?f=%5BCl%5E-%5D_%7Bin%7D%20%3D6427.4)
For [Na⁺]:
![100 \times 10^{-3} = 0.0257 \Big ( \dfrac{145}{[Na^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%200.0257%20%5CBig%20%28%20%5Cdfrac%7B145%7D%7B%5BNa%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![53.57= \Big ( \dfrac{145}{[Na^+]_{in}} \Big)](https://tex.z-dn.net/?f=53.57%3D%20%5CBig%20%28%20%5Cdfrac%7B145%7D%7B%5BNa%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![[Na^+]_{in}= 2.70](https://tex.z-dn.net/?f=%5BNa%5E%2B%5D_%7Bin%7D%3D%202.70)
The phrase dune erosion by ocean water along a shoreline best describes a density-independent limiting factor that can affect ecosystem stability (Option B).
<h3>What is a density-independent limiting factor?</h3>
A density-independent limiting factor can be defined as any factor in a given ecosystem that may alter the homeostasis of the population that lives in a given geographic area.
These factors (density-independent limiting factors) are generally abiotic factors such as hurricanes, extreme temperature conditions, the presence of contaminants in the air that hamper life in a given area, etc.
Conversely, density-dependent limiting factors are biotic factors such as competitive species that alter the development of another population.
Therefore, with this data, we can see that a density-independent limiting factor is any abiotic condition that may alter the life of a population in a give geographic area and thus alter the homeostasis of the whole ecosystem.
Learn more about density-independent limiting factors here:
brainly.com/question/20263955
#SPJ1
Answer:
The correct answer is option b. "Alpha eventually replaced by theta".
Explanation:
Electroencephalogram (EEG) techniques allows researchers to monitor the phases of sleeping according of what brain waves are seen in the equipment. A normal adult connected to EEG will respond with alpha waves during a wakeful state. However, as the person becomes drowsy and enters to the first stage of sleep, the alpha waves will be eventually replaced by theta waves. Theta waves are the dominant waves during sleeping, and also could be seen during deep meditation.