Answer:
∫ C ( y + e√x) dx + ( 2x + cosy² ) dy = 1/3
Step-by-step explanation: See Annex
Green Theorem establishes:
∫C ( Mdx + Ndy ) = ∫∫R ( δN/dx - δM/dy ) dA
Then
∫ C ( y + e√x) dx + ( 2x + cosy² ) dy
Here
M = 2x + cosy² δM/dy = 1
N = y + e√x δN/dx = 2
δN/dx - δM/dy = 2 - 1 = 1
∫∫(R) dxdy ∫∫ dxdy
Now integration limits ( see Annex)
dy is from x = y² then y = √x to y = x² and for dx
dx is from 0 to 1 then
∫ dy = y | √x ; x² ∫dy = x² - √x
And
∫₀¹ ( x² - √x ) dx = x³/3 - 2/3 √x |₀¹ = 1/3 - 0
∫ C ( y + e√x) dx + ( 2x + cosy² ) dy = 1/3
37. 6r^2
41. B
42. B
44. C
24/36
There are 36 students from 14-17 in total. 24 skip breakfast so. 24/36
The height of this triangle would be 10.4
In order to find this, you first must find the length of the sides. Using a manipulated formula for area of an equilateral triangle, we can determine the lengths of the side. Below if the formula.
S = 
In this, S is the length of the side and A is the area. So we plug in and get:
S =
S = 
S = 12
Now that we have the side as 12, we can use the Pythagorean Theorem to find the height. If you split a equilateral triangle down the middle, you are left with two right triangles. Using this right triangle, the hypotenuse would be 12, the first leg would be 6 (half of the base) and the height would be the other leg. So we plug in and solve.




h = 10.4
1. The slope is -2/5 not 3-/10