New substances are formed during a physical change
In the greenhouse effect, the Earth's atmosphere<span> acts </span>like<span> greenhouse gases
that warms the earth. ... </span>Certain gases in the atmosphere<span>, </span>like carbon dioxide<span>, </span>nitrous oxide, and methane<span>, </span>absorb heat and prevent it from escaping into space<span>.</span>
4.) We are told that ball A is travelling from right to left, which we will refer to as a positive direction, making the initial velocity of ball A, +3 m/s. If ball B is travelling in the opposite direction to A, it will be travelling at -3 m/s. The final velocity of A is +2 m/s. Using the elastic collision equation, which uses the conservation of linear momentum, we can solve for the final velocity of B.
MaVai + MbVbi = MaVaf + MbVbf
Ma = 10 kg and Mb = 5 kg are the masses of balls A and B.
Vai = +3 m/s and Vbi = -3 m/s are the initial velocities.
Vaf = +2 m/s and Vbf = ? are the final velocities.
(10)(3) + (5)(-3) = (10)(2) + 5Vbf
30 - 15 = 20 + 5Vbf
15 = 20 + 5Vbf
-5 = 5 Vbf
Vbf = -1 m/s
The final velocity of ball B is -1 m/s.
5.) We are now told that Ma = Mb, but Vai = 2Vbi
We can use another formula to look at this mathematically.
Vaf = [(Ma - Mb)/(Ma + Mb)]Vai + [(2Mb/(Ma + Mb)]Vbi
Since Ma = Mb we can simplify this formula.
Vaf = [(0)/2Ma]Vai + [2Ma/2Ma]Vbi
Vaf = Vbi
Vbf = [(2Ma/(Ma + Mb)]Vai + [(Ma - Mb)/(Ma + Mb)]Vbi
Vbf = [2Mb/2Mb]Vai + [(0)/2Mb]Vbi
Vbf = Vai
Vaf = Vbi
Vbf = 2Vbi
If the initial velocity of A is twice the initial velocity of B, then the final velocity of A will be equal to the initial velocity of B.
If the initial velocity of A is twice the initial velocity of B, then the final velocity of B will be twice the initial velocity of B.
Answer:
the larg one is 87 percent, the two mediums are 26 Percent, and the little one is 9 percent
Explanation:
no need to explain
Answer:
they get o2 from the water
Explanation:
with gills