Use the identity
sec^2x = 1 + tan^2 x
- so sec x = sqrt(1 + tan^2 x) then:-
tan x + sqrt( 1 + tan^2 x) = 1
sqrt ( 1 + tan^2 x) = 1 - tan x
1 + tan^2 x = 1 + tan^2x - 2 tan x
0 = -2 tanx
tan x = 0
x = 0, π
π is an extraneous root because sec 180 = -1
So the answer is 0 degrees
7 goes into 9, that's 1.
Remaining 2.
Move the 2 close to 3, you have 23.
7 into the 23, that's 3 times. 3 times 7 is 21.
So you are left with 2.
The answer is 13 remainder 2.
13\2\7
Answer:
A) ERROR
B) ∠C = 26°
Step-by-step explanation:
Houston, We have a problem!!! too much information
If we had a legit triangle, the law of sines would hold
19/sin138 = 8/sin20
28.395 = 23.390
as this is NOT an equality, the triangle does not exist as described.
IF it did, we'd get different results depending on which set we used
∠F = 180 - 138 - 20 = 22°
Law of sines
19/sin138 = DE/sin22 ⇒ DE = 19sin22/sin138 = <u>10.63697...</u>
or
8/sin20 = DE/sin22 ⇒ DE = 8sin22/sin20 = <u>8.762211...</u>
If we attempt to use Law of cosines
DE² = 19² + 8² - 2(19)(8)cos22 = <u>11.9639...</u>
so really none is correct because we attempt to use trig calculations to a non-triangle.
12) AC² = 15² + 19² - 2(15)(19)cos120
AC = 29.51270...
29.51270 / sin120 = 15/sinC
C = arcsin(15sin120/29.51270) = 26.1142... <u>26°</u>