A = L * W
W = 8
L = 4W....L = 4(8) = 32
A = 32 * 8
A = 256 m^2 <==
Answer: 28/r+4
Step-by-step explanation: Divide each term by r + 4 and simplify
<h3>Answer:</h3>
301.6 cubic meters
<h3>Step-by-step explanation:</h3>
A cylinder is a shape with straight sides with circular or oval cross-sections. We know that the cylinder in the question must be a circular cylinder due to its radius description.
Volume Formula
A circular cylinder has a volume of
. In this equation, V is the volume, r is the radius, and h is the height. The question tells us that r=4m and h=6m. So, we can plug these values into the formula.
Solving for Volume
To solve plug the values into the formula and rewrite the equation.
Next, apply the exponents.
Then, multiply the constants.
Finally, multiply the remaining terms. Remember to use the pi button on the calculator and not an estimation to get a more exact value.
Make sure your answer is rounded to the correct digit. This means that the volume must be 301.6 cubic meters.
Answer:
A group of ten people would be willing to spend 135$
tell me if im wrong plz
Step-by-step explanation:
Answer:

Step-by-step explanation:
To make d the subject of formula, we need to rearrange the equation such that we arrive at d= _____.

<em>Remove the fraction by multiplying (d +3) on both sides:</em>

<em>Expand</em><em>:</em>
<em>
</em>
<em>Bring</em><em> </em><em>all</em><em> </em><em>the</em><em> </em><em>d</em><em> </em><em>terms</em><em> </em><em>to</em><em> </em><em>one</em><em> </em><em>side</em><em> </em><em>and</em><em> </em><em>move</em><em> </em><em>the</em><em> </em><em>others</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>other</em><em> </em><em>side</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>equation</em><em>:</em>

<em>Factorise</em><em> </em><em>d</em><em> </em><em>out</em><em>:</em>
<em>
</em>
<em>Divide</em><em> </em><em>by</em><em> </em><em>(</em><em>c</em><em> </em><em>+</em><em>1</em><em>)</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>:</em>
<em>
</em>