Step-by-step explanation:
f(x)=2x²+3x+9
g(x) = - 3x + 10
In order to find (f⋅g)(1) first find (f⋅g)(x)
To find (f⋅g)(x) substitute g(x) into f(x) , that's for every x in f (x) replace it by g (x)
We have
(f⋅g)(x) = 2( - 3x + 10)² + 3(- 3x + 10) + 9
Expand
(f⋅g)(x) = 2( 9x² - 60x + 100) - 9x + 30 + 9
= 18x² - 120x + 200 - 9x + 30 + 9
Group like terms
(f⋅g)(x) = 18x² - 120x - 9x + 200 + 30 + 9
(f⋅g)(x) = 18x² - 129x + 239
To find (f⋅g)(1) substitute 1 into (f⋅g)(x)
That's
(f⋅g)(1) = 18(1)² - 129(1) + 239
= 18 - 129 + 239
We have the final answer as
<h3>(f⋅g)(1) = 128</h3>
Hope this helps you
Answer:
It's number three, I'm sure.

Step-by-step explanation:
Answer:
first change any decimal to a whole. -4(175+x)=18. Then times -4 by 175 and x, -700+ 4x =18. Then add +700 to -700 which equals just 4x ,then add +700 to 18, which is 4x = 718. then divide both sides by 4 and estimate. x= 180
Step-by-step explanation:
The equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
<h3>How to determine the functions?</h3>
A quadratic function is represented as:
y = a(x - h)^2 + k
<u>Question #6</u>
The vertex of the graph is
(h, k) = (-1, 2)
So, we have:
y = a(x + 1)^2 + 2
The graph pass through the f(0) = -2
So, we have:
-2 = a(0 + 1)^2 + 2
Evaluate the like terms
a = -4
Substitute a = -4 in y = a(x + 1)^2 + 2
y = -4(x + 1)^2 + 2
<u>Question #7</u>
The vertex of the graph is
(h, k) = (2, 1)
So, we have:
y = a(x - 2)^2 + 1
The graph pass through (1, 3)
So, we have:
3 = a(1 - 2)^2 + 1
Evaluate the like terms
a = 2
Substitute a = 2 in y = a(x - 2)^2 + 1
y = 2(x - 2)^2 + 1
<u>Question #8</u>
The vertex of the graph is
(h, k) = (1, -2)
So, we have:
y = a(x - 1)^2 - 2
The graph pass through (0, -3)
So, we have:
-3 = a(0 - 1)^2 - 2
Evaluate the like terms
a = -1
Substitute a = -1 in y = a(x - 1)^2 - 2
y = -(x - 1)^2 - 2
Hence, the equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
Read more about parabola at:
brainly.com/question/1480401
#SPJ1
The answer would be B I hope this helps.