1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NISA [10]
2 years ago
5

So far, Christine has driven 7.3 miles. She needs to drive a total of 16 miles. How many more miles must Christine drive?

Mathematics
1 answer:
astra-53 [7]2 years ago
3 0
You would need to do 16-7.3= 8.7 miles
You might be interested in
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
For the equation , y = -3x + 5 , tell whether its graph passes through the first quadrant. Explain how you know.
Vsevolod [243]
For any point to be in the first quadrant, it must have a positive "x" value and "y" value. 
If x = 1 then y = 2, a point with both x and y positive values which would be in the First Quadrant.




3 0
4 years ago
Help me Please..
Fittoniya [83]
Just general definitons:

a TRInomial has 3 terms (tri means three)
a BInomial has 2 terms (bi means two)
a MONOmial has 1 term (mono means one)

the degree is the highest exponent found in the algebraic expression

so they should be pretty easy to solve with that information, but just in case:

1. trinomial, degree of 4
2. binomial, degree of 3
3. monomial, degree of 2

for the final question, all you have to do is plug in 2 for x, so

(2)^2 - 2(2) + 1

4 - 4 + 1

so the answer is 1
7 0
3 years ago
Solve the system of linear equations by elimination. 12x - 7y = -2 8x + 11y = 30​
Sergio039 [100]
Answers: (y = 2) and (x = 1)

Steps:

7 0
4 years ago
What is the perimeter of the triangle?<br> units
lana [24]

Answer:

Does the answer help you?

6 0
3 years ago
Other questions:
  • (Score for Question 3: ___ of 5 points)
    10·1 answer
  • How to find where the equations meet.
    5·1 answer
  • Mr. Finley’s class visited a number of freshwater lakes to learn more about the crocodiles and alligators living in them. The cl
    8·1 answer
  • What is the answer using either the substitution method or elimination method
    8·1 answer
  • (_12)+7 what is solution ​
    12·2 answers
  • What is 1.4% of b? What is 8% of x?
    6·1 answer
  • Need help ASAP!!!The measures of angles of a triangle are shown in the figure below.Solve for x
    15·1 answer
  • Which of the following segments is a radius of 0?​
    12·2 answers
  • Which equation is correct?
    14·1 answer
  • If you had the chance, what kind of<br> class would you create?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!