<span>Answer:
skater x km/h
cyclist 20 faster x + 20 km/h
skater 30 km
cyclist 80 km
skater time = cyclist time
t=d/r
30 / x = 80 /( x + 20
cross multiply
30 ( x + 20 ) = 80 x
30 x + 600 = 80 x
30 x - 80 x = -600
-50 x = -600
/ -50
x = 12 km/h
12 km/h skater</span>
While skydiving, its not just freely falling under Earth's gravity. Additional force called drag acts against the gravity which slows down the rate of fall. Drag is caused by the air molecules which pushes against the body as it falls through them. This is actually a significant amount of force which slows down the rate of fall of the body. Drag depends on the contact surface area and weight. More the surface area in contact, more would be the drag. The sitting position of the skydiver would experience less drag than the chest down position because of the less contact surface area of the body with the air molecules while in the former case. No two persons have identical body shape and weight. Hence, the rate of fall can be made nearly equal but not exactly equal. This is would be possible when they are having same body position.
Answer:
a. by moving the book without acceleration and keeping the height of the book constant
Explanation:
FOR CONSTANT KINETIC ENERGY:
The kinetic energy of a body depends upon its speed according to its formula:
ΔK.E = (1/2)mΔv²
So, for Δv = 0 m/s
ΔK.E = 0 J
So, for keeping kinetic energy constant, the books must be moved at constant speed without acceleration.
FOR CONSTANT POTENTIAL ENERGY:
The potential energy of a body depends upon its height according to its formula:
ΔP.E = mgΔh
So, for Δh = 0 m/s
ΔP.E = 0 J
So, for keeping potential energy constant, the books must be moved at constant height.
So, the correct option is:
<u>a. by moving the book without acceleration and keeping the height of the book constant</u>
Explanation:
A wave is a disturbance in a medium. For example, when some pebbles are thrown in water, the water particles gets disturbed. A wave is characterized by the following parameters i.e.
Frequency
Wavelength etc
The number of oscillations or vibrations in a medium is called the frequency of a wave.
Also, the distance between two consecutive crests and troughs is called the wavelength of a wave. The relationship between the wavelength and the frequency of a wave is given by :
Speed of wave = frequency × wavelength
Answer:
<u>We are given: </u>
initial velocity (u) = 0 m/s
final velocity (v) = 10 m/s
displacement (s) = 20 m
acceleration (a) = a m/s/s
<u>Solving for 'a'</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(10)² - (0)² = 2(a)(20)
100 = 40a
a = 100 / 40
a = 2.5 m/s²