Answer:
-7
Step-by-step explanation:
To find the common difference, take the second term and subtract the first term
-2 - 5 = -7
Check by subtracting the second term from the third term
-9 - (-2) = -9+2 = -7
The common difference is -7
The answer to the question above is letter C. To explain the answer if the given question, a circle of 30 inches radius, if the central angle is 35 degrees, intersecting the circle forms an arc of length which is 18.33 inches.
Answer:
(a) E(X) = -2p² + 2p + 2; d²/dp² E(X) at p = 1/2 is less than 0
(b) 6p⁴ - 12p³ + 3p² + 3p + 3; d²/dp² E(X) at p = 1/2 is less than 0
Step-by-step explanation:
(a) when i = 2, the expected number of played games will be:
E(X) = 2[p² + (1-p)²] + 3[2p² (1-p) + 2p(1-p)²] = 2[p²+1-2p+p²] + 3[2p²-2p³+2p(1-2p+p²)] = 2[2p²-2p+1] + 3[2p² - 2p³+2p-4p²+2p³] = 4p²-4p+2-6p²+6p = -2p²+2p+2.
If p = 1/2, then:
d²/dp² E(X) = d/dp (-4p + 2) = -4 which is less than 0. Therefore, the E(X) is maximized.
(b) when i = 3;
E(X) = 3[p³ + (1-p)³] + 4[3p³(1-p) + 3p(1-p)³] + 5[6p³(1-p)² + 6p²(1-p)³]
Simplification and rearrangement lead to:
E(X) = 6p⁴-12p³+3p²+3p+3
if p = 1/2, then:
d²/dp² E(X) at p = 1/2 = d/dp (24p³-36p²+6p+3) = 72p²-72p+6 = 72(1/2)² - 72(1/2) +6 = 18 - 36 +8 = -10
Therefore, E(X) is maximized.
Answer:
D
Step-by-step explanation:
The sum of two remote interior angles (a remote interior angle is the interior angle that is not supplementary to the exterior angle given -- in this case A and B are remote angles) equals the exterior angle.
In This case A + B = 140
A = x + 2
B = 2x
x +2 + 2x = 140
3x + 2 = 140 Subtract 2 from both sides
3x = 138 Divide by 3
x = 138/3
x = 46
<B = 2x
<B = 2*46
<B = 92