Answer:
<h2>let's divide the fig in three quadrilaterals</h2>
(refer attachment)
<u>area </u><u>of </u><u>rectangle</u><u> </u><u>+</u><u>2</u><u>(</u><u>area </u><u>of </u><u>square</u><u>)</u>
<u>1</u><u>)</u><u>area </u><u>of </u><u>rectangle</u><u> </u>
<u>dimensions</u><u>:</u><u>-l=</u><u>1</u><u>0</u><u>m</u>
<u>b=</u><u>6</u><u>m</u>
<h3>
<u>therefore</u><u> </u><u>area </u><u>of </u><u>rectangle=</u><u>length</u><u>×</u><u>b</u><u>r</u><u>e</u><u>a</u><u>d</u><u>t</u><u>h</u></h3>
<u>
</u>
<u>Area </u><u>of </u><u>2</u><u> </u><u>square</u><u> </u>
<u>2</u><u>×</u><u>3</u><u>×</u><u>3</u>
<u>{</u><u>1</u><u>8</u><u>m</u><u>}</u><u>^</u><u>{</u><u>2</u><u>}</u>
<u>so </u><u>6</u><u>0</u><u> </u><u>+</u><u>1</u><u>8</u><u> </u>
<u>=</u><u> </u><u>{</u><u>7</u><u>8</u><u>m</u><u>}</u><u>^</u><u>{</u><u>2</u><u>}</u>