Answer:
9000RPM
Explanation:
"Angular velocity" is directly related to kinetic energy, that is, the Kinetic energy equation would allow an approximation to the resolution investigated in the problem.
The equation for KE is given by:

Now, starting from there towards the <em>Angular equation of kinetic energy</em>, the moment of inertia (i) is used instead of mass (m), and angular velocity (w) instead of linear velocity (V)
That's how we get

calculating the inertia for a solid cylindrical disk, of
m = 400kg
r = 1.2 / 2 = 0.6m

We understand that the total kinetic energy is 3.2 * 10 ^ 7J, like this:



Thus,
943 rad / s ≈ 9000 rpm
Answer:Ionic compounds are (usually) formed when a metal reacts with a nonmetal (or a polyatomic ion). Covalent compounds are formed when two nonmetals react with each other.
Explanation:
hope it helped
Answer:
U = 8.30×10-⁹J
Explanation:
m1 = m2 = 5.00kg masses of the spheres
d = 15.0cm = 15×10-²m
r = 5.10cm = 5.10×10-²m
R = d + r = 15×10-² + 5.10×10-²
R = 20.10 ×10-²m = 0.201m
G = 6.67×10-¹¹Nm²/kg²
U = Gm1×m2/R = potential energybetween the spheres
U = 6.67×10-¹¹×5.00×5.00/0.201
U = 8.30×10-⁹J
There are many advantages<span> to </span>geothermal energy.Geothermal energy<span> is renewable </span>energy<span> because once water or steam is used, it can be pumped back into the ground. It is also clean </span>energy<span>. </span>Geothermal <span>power plants, unlike plants that burn fossil fuels, do not produce greenhouse gases that can be harmful to the atmosphere.
</span>
Answer:
a)N = 3.125 * 10¹¹
b) I(avg) = 2.5 × 10⁻⁵A
c)P(avg) = 1250W
d)P = 2.5 × 10⁷W
Explanation:
Given that,
pulse current is 0.50 A
duration of pulse Δt = 0.1 × 10⁻⁶s
a) The number of particles equal to the amount of charge in a single pulse divided by the charge of a single particles
N = Δq/e
charge is given by Δq = IΔt
so,
N = IΔt / e

N = 3.125 * 10¹¹
b) Q = nqt
where q is the charge of 1puse
n = number of pulse
the average current is given as I(avg) = Q/t
I(avg) = nq
I(avg) = nIΔt
= (500)(0.5)(0.1 × 10⁻⁶)
= 2.5 × 10⁻⁵A
C) If the electrons are accelerated to an energy of 50 MeV, the acceleration voltage must,
eV = K
V = K/e
the power is given by
P = IV
P(avg) = I(avg)K / e

= 1250W
d) Final peak=
P= Ik/e
= 
P = 2.5 × 10⁷W