B might be the correct answer
Answer:

Explanation:
In order to solve this problem, we can do an analysis of the energies involved in the system. Basically the addition of the initial potential energy of the spring and the kinetic energy of the mass should be the same as the addition of the final potential energy of the spring and the kinetic energy of the block. So we get the following equation:

In this case, since the block is moving from rest, the initial kinetic energy is zero. When the block loses contact with the spring, the final potential energy of the spring will be zero, so the equation simplifies to:

The initial potential energy of the spring is given by the equation:

the Kinetic energy of the block is then given by the equation:

so we can now set them both equal to each other, so we get:

This new equation can be simplified if we multiplied both sides of the equation by a 2, so we get:

so now we can solve this for the final velocity, so we get:

Answer:
Yes
Explanation:
Friction is a force that opposes relative motion between systems in contact. One of the simpler characteristics of friction is that it is parallel to the contact surface between systems and always in a direction that opposes motion or attempted motion of the systems relative to each other.
The power that the light is able to utilize out of the supply is only 0.089 of the given.
Power utilized = (0.089)(22 W)
= 1.958 W
= 1.958 J/s
The energy required in this item is the product of the power utilized and the time. That is,
Energy = (1.958 J/s)(1 s) = 1.958 J
Thus, the light energy that the bulb is able to produce is approximately 1.958 J.
You have to divide the pressure exerted by the air into two partial pressures: of the dry air and of the water vapor. Combining these two values gives you the parameter.