The energy stored in a capacitor is given by:

where
U is the energy
C is the capacitance
V is the potential difference
The capacitor in this problem has capacitance

So if we re-arrange the previous equation, we can calculate the potential V that should be applied to the capacitor to store U=1.0 J of energy on it:
The answer is 36 kilometers per hour, or 10 meters per second.
From the law of Galileo Galilei :v²=v₀²+2ad we take the speed
v²=0+2*4.90*200=1960=>v=√1960=44.27 m/s
Answer:
Its traveling in the +x direction
Explanation:
The E-field is in the +y-direction, and the B-field is in the +z-direction, so it must be moving along the +x-direction, since the E-field, B-field and the direction of moving are all at right angles to each other.