<span>True
</span><span>True
</span><span>False*
</span><span>False*
</span><span>True
</span><span>True
</span><span>False
A,B,AB,O
10.)?
11.)</span><span>water
carbon dioxide
12.)</span><span>geocentric
</span>13.)<span>Juptier</span>
Answer:
0.04225 Nm
Explanation:
N = Force applied = 5 N
= Coefficient of static friction = 0.65
d = Diameter of knob = 1.3 cm
r = Radius of knob = 
Force is given by

When we multiply force and radius we get torque
Torque on thumb

Torque on forefinger

The total torque is given by

The most torque that exerted on the knob is 0.04225 Nm
Answer:
The centripetal acceleration of the car is
.
Explanation:
Let the mass of the car, 
Diameter of the circular path, d = 100 m
Speed of car, v = 20 m/s
Radius, r = 50 m
When an object moves in a circular path, the centripetal acceleration acts on it. It is given by :



So, the centripetal acceleration of the car is
. Hence, this is the required solution.
Answer:
4.61 seconds
Explanation:
Given data
Initial velocity= 12m/s
acceleration= -2.6m/s^2
From the given data
we can find the time t
we know that
Acceleration= velocity/time
time= velocity/acceleration
time= 12/2.6
time= 4.61 seconds