Answer: B. water frozen in the cracks of a rock help to break down the rock because water expands when frozen, and physically forces the rock apart
Answer:
28716.4740661 N
1.2131147541 m/s
51.2474965841%
Explanation:
m = Mass of plane = 74000 kg
s = Displacement = 3.7 m
f = Frictional force = 14000 N
t = Time taken = 6.1 s
u = Initial velocity = 0
v = Final velocity

Force is given by

The force with which the team pulls the plane is 28716.4740661 N

The speed of the plane is 1.2131147541 m/s
Kinetic energy is given by

Work done is given by

The fraction is given by

The teams 51.2474965841% of the work goes to kinetic energy of the plane.
Answer:
Heat energy required (Q) = 3,000 J
Explanation:
Find:
Mass of water (M) = 200 g
Change in temperature (ΔT) = 15°C
Specific heat of water (C) = 1 cal/g°C
Find:
Heat energy required (Q) = ?
Computation:
Q = M × ΔT × C
Heat energy required (Q) = Mass of water (M) × Change in temperature (ΔT) × Specific heat of water (C)
Heat energy required (Q) = 200 g × 15°C × 1 cal/g°C
Heat energy required (Q) = 3,000 J