Answer:
μ = mg/kx
Explanation:
Since the bock does not slip, the frictional force equals the weight of the block. So, F = mg. Now, the frictional force, F = μN where μ = coefficient of static friction and N = Normal force.
Now, the normal force equals the spring force F' = kx where k = spring constant and x = compression of spring.
N = F' = kx
So, F = μN = μkx
μkx = mg
So, μ = mg/kx
Answer:
a =( -0.32 i ^ - 2,697 j ^) m/s²
Explanation:
This problem is an exercise of movement in two dimensions, the best way to solve it is to decompose the terms and work each axis independently.
Break down the speeds in two moments
initial
v₀ₓ = v₀ cos θ
v₀ₓ = 5.25 cos 35.5
v₀ₓ = 4.27 m / s
= v₀ sin θ
= 5.25 sin35.5
= 3.05 m / s
Final
vₓ = 6.03 cos (-56.7)
vₓ = 3.31 m / s
= v₀ sin θ
= 6.03 sin (-56.7)
= -5.04 m / s
Having the speeds and the time, we can use the definition of average acceleration that is the change of speed in the time order
a = (
- v₀) /t
aₓ = (3.31 -4.27)/3
aₓ = -0.32 m/s²
= (-5.04-3.05)/3
= -2.697 m/s²
Explanation:
please send full question....
The insulin levels lead to the cause of type 2 diabetes
the puck recoils in each case.
larger mass stone gives puck greater recoil, smaller stone, smaller recoil