Whatever is inside of the ( ), simply plug that digit into the x-values for f(x)
So: f(x) = 7x - x^2, and f(7+h) - f(7)
= [7(7+h) - (7+h)^2] - [7(7) - (7)^2]
= [49+7h - 49+14h+h^2] - [49-49]
= 49-49 + 7h+14h + h^2 = h^2 + 21h =
h (h+21), h (h+21) = 0
h=0... But it stated h cannot = 0
So h+21 = 0, h = -21
Answer:
Sum of 2 3/8 + 5 1/4 = 7 5/8
Answer:
x<6/5, x>14/5
Step-by-step explanation:
Steps
$5\left|x-2\right|+4>8$
$\mathrm{Subtract\:}4\mathrm{\:from\:both\:sides}$
$5\left|x-2\right|+4-4>8-4$
$\mathrm{Simplify}$
$5\left|x-2\right|>4$
$\mathrm{Divide\:both\:sides\:by\:}5$
$\frac{5\left|x-2\right|}{5}>\frac{4}{5}$
$\mathrm{Simplify}$
$\left|x-2\right|>\frac{4}{5}$
$\mathrm{Apply\:absolute\:rule}:\quad\mathrm{If}\:|u|\:>\:a,\:a>0\:\mathrm{then}\:u\:<\:-a\:\quad\mathrm{or}\quad\:u\:>\:a$
$x-2<-\frac{4}{5}\quad\mathrm{or}\quad\:x-2>\frac{4}{5}$
Show Steps
$x-2<-\frac{4}{5}\quad:\quad x<\frac{6}{5}$
Show Steps
$x-2>\frac{4}{5}\quad:\quad x>\frac{14}{5}$
$\mathrm{Combine\:the\:intervals}$
$x<\frac{6}{5}\quad\mathrm{or}\quad\:x>\frac{14}{5}$
Find the nth term of each of the sequences.<br>
(a) 16, 19, 22, 25, 28, ...<br>
(b) 1,3,9,27,81,...
juin [17]
Answer:
a) 16, 19, 22, 25, 28, 31, 34, 37, 40
b) 1, 3, 9, 27, 81, 243, 729, 2187
<h3>Explanation:</h3>
a) Add 3 on every number.
b) Multiply every number by 3.
2.54 cm = 1 inch
3.2 inches * 2.54 cm / inch =8.128 centimeters