To calculate the z-statistic, we must first calculate the
standard error.
Standard error is standard deviation divided by the square
root of the population. In this case, it is equal to 2.68.
The z-score is defined the distance from the sample to the
population mean in units of standard error.
z = (195 – 208)/2.68 = -4.86
Answer:
θ = -33.69°
Step-by-step explanation:
For Φ>0 and Φ<0 (in general Φ≠nπ where n is an integer), sin(Φ) ≠ 0
Dividing both equations:
Therefore:
arctan(θ) = -2/3
θ = -33.69°
The answer does not depend on the sign of Φ, in fact we just need that the sine does not become zero, which occurs when Φ is equal to an integer times π (radians) or 180 (degrees)
Have a nice day!
Using the equation of the test statistic, it is found that with an increased sample size, the test statistic would decrease and the p-value would increase.
<h3>How to find the p-value of a test?</h3>
It depends on the test statistic z, as follows.
- For a left-tailed test, it is the area under the normal curve to the left of z, which is the <u>p-value of z</u>.
- For a right-tailed test, it is the area under the normal curve to the right of z, which is <u>1 subtracted by the p-value of z</u>.
- For a two-tailed test, it is the area under the normal curve to the left of -z combined with the area to the right of z, hence it is <u>2 multiplied by 1 subtracted by the p-value of z</u>.
In all cases, a higher test statistic leads to a lower p-value, and vice-versa.
<h3>What is the equation for the test statistic?</h3>
The equation is given by:
The parameters are:
- is the sample mean.
- is the tested value.
- s is the standard deviation.
From this, it is taken that if the sample size was increased with all other parameters remaining the same, the test statistic would decrease, and the p-value would increase.
You can learn more about p-values at brainly.com/question/26454209
$6.25 × h = c
h = hours, c = total cost
$31.25 for 5 hours. $6.25 per hour
$50 for 8 hours. $6.25 per hour