The answer to number four is 90,000.
hope this helps!
-SummerBreaker ;)
The question is incomplete! Complete question along with answers and step by step explanation is provided below.
Question:
(a) Binomial probability distributions depend on the number of trials n of a binomial experiment and the probability of success p on each trial. Under what conditions is it appropriate to use a normal approximation to the binomial? (Select all that apply.)
nq > 10
np > 5
p > 0.5
np > 10
p < 0.5
nq > 5
(b) What is the probability of "12" or fewer successes for a binomial experiment with 20 trials. The probability of success on a single trial is 0.50. Use the normal approximation of the binomial distribution to answer this question. (Round your answer to four decimal places.)
Answer:
(a) The correct options are np > 5 and nq > 5
(b) P(x ≤ 12) = 0.8133
Step-by-step explanation:
Please refer to the attached images for explanation, I am unable to type in text editor due to some technical error!
You're on the right track. Start by combining like terms on the left side of the equation by adding 56 and 34.
90 = n + 30, now subtract 30 from both sides of the equation to isolate the variable n.
60 = n is the answer.