Answer:
00.001 mol/h+
Explanation:
The ph of a solution is defined as the negative iogaristhum pf the hydrogen ion concentration(in mole)ph=log(h+)poh=-log
Balance the equation first:
2 Fe+6 HNO3→2 Fe(NO3)3+3H2
Then calculate mass of Iron :
4.5×3.0×3.5 cm3(1 mL1 cm3)(7.87 g Fe1 ml)=371.86 g Fe
Now use Stoichiometry:
371.86 g Fe×(1 mol Fe55.85 g Fe)×(6 mol HNO32 mol Fe)=19.97 mol HNO3
Convert moles of nitric acid to grams
19.97 mol HNO3×(63.01 g HNO31 mol HNO3)=1258.3 g HNO3
The correct answer is option A. Energy cannot be created during an ordinary chemical reaction. There is no such thing as an ordinary chemical reaction. Energy cannot be created or destroyed this is according to the law of conservation of energy. It can only be transformed from one form to another form.
Answer:
c = 4016.64 j/g.°C
Explanation:
Given data:
Mass of substance = 2.50 g
Calories release = 12 cal (12 ×4184 = 50208 j)
Initial temperature = 25°C
Final temperature = 20°C
Specific heat of substance = ?
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Solution:
Q = m.c. ΔT
ΔT = T2 - T1
ΔT = 20°C - 25°C
ΔT = -5°C
50208 j = 2.50 g . c. -5°C
50208 j = -12.5 g.°C .c
50208 j /-12.5 g.°C = c
c = 4016.64 j/g.°C