Answer:
The answer is 138.5
Explanation:
STEP 1:
The inductance per unit length of a coaxial transmission line is
L′=L<em>/ </em>I
=Ø/H
=μoI/2π In (b/a)
In this a is the radius of inner conductor
b is the radius of outer conductor
I is the coaxial transmission
μ is the magnetic permeability
Since the transmission of the charge exists in air, the value of the relative permeability is μr= I and permeability of free space is μo= 4π x 10-7 H/m . So the magnetic permeability will be
μ = μoμ r
μ =μ o(I) 4π x 10-7 H/m
L′= μoI/2π In (b/a)
= (4π x 10-7 ) (2)/2π In (10/5)
=2.77 x 10-7 H
STEP 2:
Obtain the magnetic energy stores in the magnetic field H of a volume of the coaxial transmission line containing a material with permeability μ, by using the formula given below:
Wm= 1/2 LI^2
= 1/2 (2.77x 10^-7 I^2
= 138.5 X 10^-9 I^2 J
Now we will simplify the equation
Wm= 185.5<em>I</em>^2 nJ
So, the magnetic energy stored in insulating medium is 185.5<em>I</em>^2 nJ
The image position is 13.9 cm from the mirror
Explanation:
To solve this problem, we can use the mirror equation:

where
f is the focal length
p is the distance of the object from the mirror
q is the distance of the image from the mirror
In this problem, we have:
f = 3.4 cm is the focal length of the mirror (positive for a concave mirror)
p = 4.5 cm is the position of the object (the tree)
Solving the equation for q, we find the position of the image:

Learn more about mirrors:
brainly.com/question/8737441
#LearnwithBrainly
Answer:
Option (c) is correct.
Explanation:
Acceleration of an object is given by the formula as follows :

Where
u and v are initial and final velocity
t is time
(v-u) is also called the change in velocity
So, the acceleration of an object is equal to the rate of change of velocity. Hence, the correct option is (c) " Change in its velocity divided by the change in time".
Answer:
72000 miles
Explanation:
If the distance between the students is 600 miles, and this implies in a 3 degree difference in the sun position, that means this 600 miles is related to 3 degrees of the circunference of the planet.
So, to find the whole circunference of the planet, that is, 360 degrees, we just need to use a rule of three:
3 degrees -> 600 miles
360 degrees -> x miles
3x = 600 * 360
x = 600 * 360 / 3 = 72000 miles