Answer:
Explanation:
mass of refrigerator, m = 110 kg
coefficient of static friction, μs = 0.85
coefficient of kinetic friction, μk = 0.59
(a) the minimum force required to just start the motion in refrigerator
F = μs x mg
F = 0.85 x 110 x 9.8
F = 916.3 N
(b) The force required to move the refrigerator with constant speed
F' = μk x mg
F' = 0.59 x 110 x 9.8
F' = 636.02 N
(c) Let a be the acceleration.
Net force = Applied force - friction force
F net = 950 - 636.02
F net = 313.98 N
a = F net / mass
a = 313.98 / 110
a = 2.85 m/s²
The electrostatic force between two charges is given by Coulomb's law:

where
ke is the Coulomb's constant
q1 is the first charge
q2 is the second charge
r is the separation between the two charges
By substituting the data of the problem into the equation, we can find the magnitude of the force between the two charges:
Answer:
The balloon prohibits the flow of air through the air capacitor.
Explanation:
Just like an electric capacitor has an insulator between the plates, the air capacitor has a balloon between the chambers.
The answer is (a) because movement is acceleration
I think its Coulomb's law<span>
</span>