Answer:
<h3>Q cuts the diagonal PA into 2 equal halves, since the diagonals of rhombus meet at right angles.</h3><h3>The value of x is 8.</h3>
Step-by-step explanation:
Given that Quadrilateral CAMP below is a rhombus. the length PQ is (x+2) units, and the length of QA is (3x-14) units
From the given Q is the middle point, which cut the diagonal PA into 2 equal halves.
By the definition of rhombus, diagonals meet at right angles.
Implies that PQ = QA
x+2 = 3x - 14
x-3x=-14-2
-2x=-16
2x = 16
dividing by 2 on both sides, we will get,

<h3>∴ x=8</h3><h3>Since Q cuts the diagonal PA into 2 equal halves, since the diagonals of rhombus meet at right angles we can equate x+2 = 3x-14 to find the value of x.</h3>
The line segment 


( since x=8)


<h3>∴

units</h3>
Answer:
maybe number 2
Step-by-step explanation:
because if 2+k=18 then there is no other k there and where did the additional 2 come from ?and 2k=18 then value of k is 9 + there is balance.I may be wrong correct me but i think it is no.2
2.75 as a mixed number would be:
Pi/4 radians
You're looking for the angle that has a secant of sqrt(2). And since the secant is simply the reciprocal of the cosine, let's take a look at that.
sqrt(2) = 1/x
x*sqrt(2) = 1
x = 1/sqrt(2)
Let's multiply both numerator and denominator by sqrt(2), so
x = sqrt(2)/2
And the value sqrt(2)/2 should be immediately obvious to you as a trig identity. Namely, that's the cosine of a 45 degree angle. Now for the issue of how to actually give you your answer. There's no need for decimals to express 45 degrees, so that caveat in the question doesn't make any sense unless you're measuring angles in radians. So let's convert 45 degrees to radians. A full circle has 360 degrees, or 2*pi radians. So:
45 * (2*pi)/360 = 90*pi/360 = pi/4
So your answer is pi/4 radians.