1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVETLANKA909090 [29]
3 years ago
14

Explain how to solve -4(1.75 + x) =18

Mathematics
1 answer:
kobusy [5.1K]3 years ago
8 0

Answer:

first change any decimal to a whole. -4(175+x)=18. Then times -4 by 175 and x, -700+ 4x =18. Then add +700 to -700 which equals just 4x ,then add +700 to 18, which is 4x = 718. then divide both sides by 4 and estimate. x= 180

Step-by-step explanation:

You might be interested in
Solve for g: 19 > 2(g + 7.9).
iren [92.7K]

Answer: g < 1 3/5

Step-by-step explanation:

first, i removed the parentheses.

19 > 2g + 15.8

then, i moved the terms.

-2g > 15.8 - 19

the, i calculated that.

-2g > -3.2

finally, i divided both sides.

g < 1.6

the alternative form is g < 1 3/5

(basically, the second answer)

5 0
3 years ago
The volume of a tool shed is 1080 ft3. The width of the shed is 10 ft. The length of the shed is 12 ft. What is the height of th
Elina [12.6K]
The answer would 9 my dude.  Or atleast i think'
5 0
3 years ago
al lanzar 2 dados las sumas de sus caras superiores es 7. Hallar la probabilidad de que unas de las caras haya sido 3
fomenos

Answer:

15/216 (6.944%)

Tienes suerte, me tomé 5 años de español! Hoep me ayudó!


3 0
3 years ago
Find the integrate of 2x/sqrt(1-x^2) dx from 0 to 1/2
Ludmilka [50]
Compute the definite integral:

\large\begin{array}{l}\mathsf{\displaystyle\int_{0}^{\frac{1}{2}}\frac{2x}{\sqrt{1-x^2}}\,dx}\\\\ =\mathsf{\displaystyle\int_{0}^{\frac{1}{2}}\frac{-1}{\sqrt{1-x^2}}\cdot (-2x)\,dx\qquad\quad(i)} \end{array}


\large\begin{array}{l} \textsf{Substitute}\\\\ \mathsf{1-x^2=u~~\Rightarrow~~-2x\,dx=du}\\\\\\ \textsf{Finding the new limits of integration:}\\\\ \begin{array}{lcl} \textsf{When }\mathsf{x=0}&~\Rightarrow~&\mathsf{u=1-0^2}\\\\ &&\mathsf{u=1}\\\\\\ \textsf{When }\mathsf{x=\dfrac{1}{2}}&~\Rightarrow~&\mathsf{u=1-\left(\dfrac{1}{2}\right)^2}\\\\ &&\mathsf{u=1-\dfrac{1}{4}}\\\\ &&\mathsf{u=\dfrac{3}{4}} \end{array} \end{array}


\large\begin{array}{l} \textsf{Then (i) becomes}\\\\ =\mathsf{\displaystyle\int_{1}^{\frac{3}{4}}\frac{-1}{\sqrt{u}}\,du}\\\\ =\mathsf{\displaystyle\int_{1}^{\frac{3}{4}}\frac{-1}{u^{\frac{1}{2}}}\,du}\\\\ =\mathsf{\displaystyle\int_{1}^{\frac{3}{4}} (-1)\cdot u^{-\frac{1}{2}}\,du}\\\\ =\mathsf{(-1)\cdot \dfrac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\bigg|_{1}^{\frac{3}{4}}} \end{array}

\large\begin{array}{l} =\mathsf{(-1)\cdot \dfrac{~~u^{\frac{1}{2}}~~}{\frac{1}{2}}\bigg|_{1}^{\frac{3}{4}}}\\\\ =\mathsf{(-1)\cdot 2u^{\frac{1}{2}}\Big|_{1}^{\frac{3}{4}}}\\\\ =\mathsf{-2\cdot \sqrt{u}\Big|_{1}^{\frac{3}{4}}}\\\\ =\mathsf{-2\cdot \left(\sqrt{\dfrac{3}{4}}-\sqrt{1}\right)} \end{array}

\large\begin{array}{l} =\mathsf{-2\cdot \left(\dfrac{\sqrt{3}}{2}-1\right)}\\\\ =\mathsf{-\diagup\!\!\!\! 2\cdot \dfrac{\sqrt{3}}{\diagup\!\!\!\! 2}+(-2)\cdot (-1)}\\\\ =\mathsf{-\sqrt{3}+2}\\\\ =\mathsf{2-\sqrt{3}} \end{array}


\large\begin{array}{l} \boxed{\begin{array}{c}\mathsf{\displaystyle\int_{0}^{\frac{1}{2}}\frac{2x}{\sqrt{1-x^2}}\,dx=2-\sqrt{3}} \end{array}}\qquad\checkmark \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2153950


\large\textsf{I hope it helps.}


</span><span><span>Tags: <em>definite integral integrate limits function irrational square root sqrt fraction composite substitution integral calculus</em></span>
</span>
4 0
4 years ago
Q8<br> The midpoint of GH is M (2,2). One endpoint is H (1,9). Find the coordinates of endpoint G.
Amanda [17]

Answer:

(3,-5)

Step-by-step explanation:

Given

M = (2,2)

H = (1,9)

Required

Determine G

This is calculated using the following midpoint formula;

M(x,y) = (\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2})

Where

(x,y) = (2,2) and (x_1,y_1) = (1,9)

Substitute these values in the formula above

(2,2) = (\frac{1 + x_2}{2},\frac{9 + y_2}{2})

Solving for x_2

2 =\frac{1 + x_2}{2}

Multiply both sides by 2

2 * 2 = 1 + x_2

4 = 1 + x_2

x_2 = 4 - 1

x_2 = 3

Solving for y_2

2 = \frac{9 + y_2}{2}

Multiply both sides by 2

2 * 2 = 9 + y_2

4 = 9 + y_2

y_2 = 4 - 9

y_2= -5

Hence, the coordinates of G is (3,-5)

4 0
3 years ago
Other questions:
  • The vertex of a parabola can be:
    6·1 answer
  • Only 2 stuff to do .... :3
    8·1 answer
  • Kenny works as a shopping mall security guard and is paid $7.50 an hour. Find his gross pay when he works 46 hour a week.
    9·1 answer
  • What do you use to repair a TUBA
    8·1 answer
  • What is 78 million in scientic notation?
    11·2 answers
  • I nEeD hElP!!!!!!!! I WILL GIVE 20 PONITSSSS
    7·2 answers
  • This is due is in about 15 minutes.. :')
    11·1 answer
  • PLSSSSSSS HELPPPPPPP I WILL GIVE BRAINLIESTTTTTTTTTT!!!!!!!!!!!!!!!!!!!!!PLSSSSSSS HELPPPPPPP I WILL GIVE BRAINLIESTTTTTTTTTT!!!
    6·2 answers
  • We bought three hundred t-shirts for 200.00. what was the cost per t shirt?​
    10·2 answers
  • Bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!