we conclude that the point on this line that is apparent from the given equation is (-6, 6)
<h3>
Which point is on the line, only by looking at the equation?</h3>
Remember that a general linear equation in slope-intercept form is:
y = a*x + b
Where a is the slope.
Here we have the linear equation:
y - 6= (-23)*(x + 6)
Now, for a linear equation with a slope a and a point (h, k), the point slope form of the linear equation is:
(y - k) = a*(x - h)
Now we can compare that general form with our equation, we will get:
(y - k) = a*(x - h)
(y - 6) = (-23)*(x + 6)
Then we have: k = 6 and h = -6.
Thus, we conclude that the point on this line that is apparent from the given equation is (-6, 6).
If you want to learn more about linear equations:
brainly.com/question/1884491
#SPJ1
Answer:
2x + y = -10
Step-by-step explanation:
Simplify −2(x+7)
y−4=−2x−14
Move all terms containing variables to the left side of the equation.
2x+y−4= −14
Move all terms not containing a variable to the right side of the equation.
2x + y = −10
Hope this helps
Part a)
MAD = median of absolute deviations
MAD = median of the set formed by : |each value - Median|
Then, first you have to find the median of the original set
The original set is (<span>38, 43, 45, 50, 51, 56, 67)
The median is the value of the middle (when the set is sorte). This is 50.
Now calculate the absolute deviation of each data from the median of the data.
1) |38 - 50| = 12
2) |43 - 50| = 7
3) |45 - 50| = 5
4) |50 - 50| = 0
5) |51 - 50| = 1
6) |56 - 50| = 6
7) |67 - 50| = 17
Now arrange the asolute deviations in order
(0, 1, 5, 6, 7, 12, 17)
The median is the value of the middle: 6.
Then the MAD is 6.
Part b) MAD represents the median of the of the absolute deviations from the median of the data.
</span>
Answer:
A = P(1 + r)t i think
Step-by-step explanation: