Answer:
1.84 L
Explanation:
Using the equation for reversible work:

Where:
W is the work done (J) = -287 J.
Since the gas did work, therefore W is negative.
P is the pressure in atm = 1.90 atm.
However, work done is in joules and pressure is in atm. We can use the values of universal gas constant as a convenient conversion unit. R = 8.314 J/(mol*K); R = 0.0821 (L*atm)/(mol*K)
Therefore, the conversion unit is 0.0821/8.314 = 0.00987 (L*atm)/J
is the initial volume = 0.350 L
is the final volume = ?
Thus:
(-287 J)*0.00987 (L*atm)/J = -1.9 atm*(
- 0.350) L
= [(287*0.00987)+(1.9*0.350)]/1.9 = (2.833+0.665)/1.9 =1.84 L
Answer:
Mg ²⁺
Explanation:
Τhe metal loses electrons and in forming Mg²⁺ ,it loses 2 electrons and hence oxidized.
Mg(s) ⇒ Mg²⁺ + 2e⁻
Answer ; The correct answer is : 346 m/s .
Sound is a type of longitudinal wave , which is produced when a matter compress or refracts .
Speed of sounds depends on factors like medium , density , temperature etc .
Effect of Temperature on speed of sounds :
When the temperature increases , molecules gains energy and they starts vibrating and with higher temperature vibration becomes fast . So the waves of sounds can travel faster due to faster vibrations . Hence , speed of sounds is directly proportional to the temperature or speed of sounds increases with increase in temperature .
The speed of sounds at 0⁰C is 331 
The relation between speed of sound and temperature is given as :

Given : Temperature = 25 ⁰ C
Plugging values in formula =>



Answer:
The answer to your question is: C. The specific latent heat of fusion
Explanation:
A. The specific latent heat of vaporization Specific latent heat of vaporization indicates the transition from liquid to vapor, but we are not looking for this definition. This answer is wrong.
B. The specific heat
indicates the amount of heat needed to increase the temperature of water 1°C, so this answer is wrong.
C. The specific latent heat of fusion
. This heat indicate the transition from solid ie to liquid, so this is the right answer.
D. The internal energy measures the energy of the molecules of a substance, so this answer is wrong.
Answer:
2.8g/cm³
Explanation:
Given parameters:
Mass of cube = 42g
Volume of cube = 15cm³
Unknown:
Density of the cube = ?
Solution:
Density is defined as the mass per unit volume of a substance. It is mathematically expressed as:
Density =
So;
Density =
= 2.8g/cm³